• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
PU Ju-yi, LIU Bo. Control effects of soil reinforcement on underlying metro tunnel deformation and influenced zone induced by deep excavation in soft strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 146-149. DOI: 10.11779/CJGE2021S2035
Citation: PU Ju-yi, LIU Bo. Control effects of soil reinforcement on underlying metro tunnel deformation and influenced zone induced by deep excavation in soft strata[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 146-149. DOI: 10.11779/CJGE2021S2035

Control effects of soil reinforcement on underlying metro tunnel deformation and influenced zone induced by deep excavation in soft strata

More Information
  • Received Date: August 15, 2021
  • Available Online: December 05, 2022
  • The commonly used soil reinforcement method is selected, and the finite element numerical method is used to study the influences of soil reinforcement in the pit on the deformation characteristics of the underlying metro tunnels caused by excavation. By defining the index of deformation control efficiency, the tunnel deformation control effect is characterized, and considering the deformation control effect and engineering economy together, the suggested scheme for soil reinforcement form and strength in the pit is given. Then, by using the above scheme, the control effect of soil reinforcement on the influenced zone induced by excavation is studied. There sults indicate that the control effect of the overall reinforcement is better than the strip-shaped reinforcement and the skirt-border reinforcement on the plane, and vertically the effect of layered reinforcement is better than the mixed reinforcement and the plate-type reinforcement. The tunnel deformation control efficiency increases non-linearly with the strength of reinforced soil, and there exists an optimal value for reinforced soil strength. After the soil in the pit is reinforced using the suggested overall reinforcement on the plane and the mixed reinforcement vertically (the reinforced soil strength below the base slab is 2.0 MPa, and that above the base slab is 0.5 MPa), the heave deformation of the underlying tunnel is significantly reduced, the distribution characteristics of the tunnel heave and the mode of influenced zone are changed, and the scope of the influenced zone is reduced.
  • [1]
    城市轨道交通工程监测技术规范:GB 50911—2013[S]. 2014.

    Code for Monitoring Measurement of Urban Rail Transit Engineering: GB 50911—2013[S]. 2014. (in Chinese)
    [2]
    丁勇春. 软土地区深基坑施工引起的变形及控制研究[D]. 上海: 上海交通大学, 2009.

    DING Yong-chun. Excavation- induced Deformation and Control in Soft Deposits[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
    [3]
    郑刚, 杜一鸣, 刁钰, 等. 基坑开挖引起邻近既有隧道变形的影响区研究[J]. 岩土工程学报, 2016, 38(4): 599-612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604004.htm

    ZHENG Gang, DU Yi-ming, DIAO Yu, et al. Influenced zones for deformation of existing tunnels adjacent to excavations[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 599-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604004.htm
    [4]
    刘波. 软弱地层中基坑开挖卸荷引起临近既有地铁盾构隧道变形及控制方法研究[D]. 南京: 东南大学, 2020: 147-148.

    LIU Bo. Deformation and Its Control of Existing Shield Tunnel Induced by Unloading of Adjacent Foundation Pit Excavation in Weak Stratum[D]. Nanjing: Southeast University, 2020: 147-148. (in Chinese)
    [5]
    城市轨道交通结构安全保护技术规范:CJJ/T 202—2013[S]. 2014.

    Technical Code for Protection Structures of Urban Rail Transit: CJJ/T 202—2013[S]. 2014. (in Chinese)
  • Cited by

    Periodical cited type(18)

    1. 柴永进,渠根启,潘童. 考虑降雨作用下公路高边坡变形预测的ELM方法及工程应用. 科技创新与应用. 2024(01): 98-102 .
    2. 崔靖奇,吴顺川,程海勇,王涛,姜关照,浦仕江,任子健. 滇中引水软岩隧洞围岩位移时序预测. 清华大学学报(自然科学版). 2024(07): 1215-1225 .
    3. 马恩临,赖金星,王立新,汪珂,雷升祥,李储军,邱军领. 基于控制区间牵引算法的地下施工变形预测. 岩土力学. 2023(02): 577-594 .
    4. 哈吉章,杨良义,肖旺槟,李晶生,彭乙芹. 基于组合预测模型的地铁车站地表沉降研究. 广东土木与建筑. 2023(02): 49-53 .
    5. 王述红,董福瑞. 基于变形预测和参数反演的山岭隧道围岩稳定性分析. 岩土工程学报. 2023(05): 1024-1035 . 本站查看
    6. 成睿,李素敏,韩追,毛嘉骐,李彦臣. 时序InSAR与GWO-VMD相结合的地表沉降预测. 贵州大学学报(自然科学版). 2023(03): 78-85 .
    7. 李永靖,王松,刘维青,文成章,高航. 某隧道穿越富水断层破碎带围岩大变形成因分析及稳定性预测. 矿业研究与开发. 2023(05): 84-90 .
    8. 侯明华,袁颖,杨丛铭,李云鹏,黄虎城. 基于麻雀搜索算法优化Elman残差自校正地面沉降预测模型. 科学技术与工程. 2023(13): 5470-5480 .
    9. 付宏渊,刘忠伟,邱祥,罗震宇. 红黏土路堤填挖交界段工后沉降变形研究. 交通科学与工程. 2023(02): 1-7+15 .
    10. 陈城,史培新,王占生,贾鹏蛟. 基于融合多注意力机制的深度学习的盾构荷载预测方法. 东北大学学报(自然科学版). 2023(11): 1631-1637+1646 .
    11. 尹宏,王述红,董卓然,侯钦宽. 引入因子分析的结构面粗糙度RBF复合参数模型. 岩土工程学报. 2022(04): 721-730 . 本站查看
    12. 林广东,何军,申小军,徐龙飞,裴莉莉,余婷. 基于随机森林的隧道建成初期累计沉降量预测. 计算技术与自动化. 2022(01): 160-163 .
    13. 宋光浩. 基于数据插值预测路基沉降及误差分析. 地理空间信息. 2022(04): 175-177 .
    14. 叶勇超,闫超德,罗先学,张瑞峰,袁观杰. 时序InSAR郑州地铁沿线地面沉降分析. 遥感学报. 2022(07): 1342-1353 .
    15. 胡仕明,杨伟红,李涛,李昕堃. 公路隧道洞口顺层边坡变形规律分析. 岩土工程技术. 2022(06): 477-482 .
    16. 王述红,董福瑞,朱宝强,刘欢,张泽. 山岭隧道围岩参数智能反演及稳定性分析. 应用基础与工程科学学报. 2021(05): 1171-1185 .
    17. 朱宝强,王述红,张泽,王鹏宇,董福瑞. 基于时间序列与DEGWO-SVR模型的隧道变形预测方法. 浙江大学学报(工学版). 2021(12): 2275-2285 .
    18. 柳明. 基于划分沉降区域的基坑沉降预测方法. 测绘标准化. 2021(04): 35-38 .

    Other cited types(14)

Catalog

    Article views PDF downloads Cited by(32)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return