• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BA Zhenning, LIU Yue, ZHAO Jingxuan, ZHANG Yushan, LIANG Jianwen. Near-fault broadband ground-motion simulation of 2021 Yangbi M6.4 earthquake: an improved FK method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 709-719. DOI: 10.11779/CJGE20211574
Citation: BA Zhenning, LIU Yue, ZHAO Jingxuan, ZHANG Yushan, LIANG Jianwen. Near-fault broadband ground-motion simulation of 2021 Yangbi M6.4 earthquake: an improved FK method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 709-719. DOI: 10.11779/CJGE20211574

Near-fault broadband ground-motion simulation of 2021 Yangbi M6.4 earthquake: an improved FK method

More Information
  • Received Date: December 30, 2021
  • Available Online: March 02, 2023
  • Extending the physics-based ground-motion simulation from the existing 1~2 Hz resolution to the higher frequency of 5~10 Hz, which is sensitive to the engineering structure, is a critical development direction of near-fault ground-motion simulation in modern seismic engineering. An improved frequency-wavenumber domain (FK) method is established, combined with the GP14.3 hybrid-source model, to achieve an efficient simulation of 0~10 Hz near-fault ground motion. A revised stiffness matrix method is established to solve the theoretical Green's function, with which the problem of propagation of high-frequency seismic waves in the 1D velocity crustal structure is effectively solved. The reasonable combination of low-frequency deterministic parts and high-frequency stochastic parts on the finite-fault plane effectively solves the problem of high-frequency seismic waves radiated from the rupture process. The method is applied to the simulation of the M6.4 shallow damage earthquake in Yangbi of Yunnan on May 21, 2021. The comparison with the strong-earthquake records at eight stations (covering the near-field, mid-field, and far-field) and the response spectra shows that the simulated results are in good agreement with the waveform, duration and amplitude of the records, and agree with the response spectra in each frequency band, which well verifies the applicability of the proposed method and model and the reliability of the simulated frequency bandwidth. Finally, the ground motions within the range of 100 km×100 km at the regional scale are simulated, and the PGA distribution and velocity wavefield snapshots in the Yangbi area are given. The PGA and PGV empirical attenuation equations and the spectral characteristics are proposed. The results show that: (1) The 2021 Yangbi M6.4 earthquake exhibits obvious concentration effects and rupture directional effects. (2) The peak ground motion attenuation is faster within 20 km of the near field, that is, the maximum attenuation of PGA is 93.1%, and the maximum attenuation of PGV is 83.3%. (3) The frequency components in the near-field range mainly include 0~10 Hz broadband components. When the epicenter distance exceeds 20 km, the frequency components are concentrated primarily in a range of 0~4 Hz.
  • [1]
    张斌, 李小军, 林国良, 等. 2021年5月21日漾濞MS6.4地震近场地震动特征和方向性效应分析[J]. 地球物理学报, 2021, 64(10): 3619-3631. doi: 10.6038/cjg2021O0529

    ZHANG Bin, LI Xiaojun, LIN Guoliang, et al. Analysis of strong ground motion characteristics and directivity effect in the near-field for the May 21, 2021 MS6.4 Yangbi earthquake[J]. Chinese Journal of Geophysics, 2021, 64(10): 3619-3631. (in Chinese) doi: 10.6038/cjg2021O0529
    [2]
    黎朕灵, 金明培, 缪素秋. 2021年云南漾濞MS6.4地震同震位移场和震源滑动模型反演[J]. 地震研究, 2021, 44(3): 330-337. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202103004.htm

    LI Zhenling, JIN Mingpei, MIAO Suqiu. Slip model and Co-seismic displacement field of the 2021 Yangbi, Yunnan MS6.4 earthquake[J]. Journal of Seismological Research, 2021, 44(3): 330-337. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202103004.htm
    [3]
    刘俊清, 甘卫军, 王光明, 等. 2021年5月21日云南漾濞MS6.4地震序列地震矩张量及发震构造[J]. 地球物理学报, 2021, 64(12): 4475-4487. doi: 10.6038/cjg2021P0559

    LIU Junqing, GAN Weijun, WANG Guangming, et al. Seismic moment tensor and seismogenic structure of the Yangbi MS6.4 earthquake sequence on May 21, 2021 in Yunnan[J]. Chinese Journal of Geophysics, 2021, 64(12): 4475-4487. (in Chinese) doi: 10.6038/cjg2021P0559
    [4]
    靳超越, 胡进军, 胡磊, 等. 基于机器学习的地震动特征提取与模拟: 以2021年云南漾濞6.4级地震为例[J]. 世界地震工程, 2021, 37(4): 73-80. doi: 10.3969/j.issn.1007-6069.2021.04.009

    JIN Chaoyue, HU Jinjun, HU Lei, et al. Machine learning-based seismic feature extraction and simulation—a case study of the 2021 Yangbi M6.4 earthquake[J]. World Earthquake Engineering, 2021, 37(4): 73-80. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.04.009
    [5]
    何欣娟, 潘华. 2021年云南漾濞MS6.4地震的强地面运动模拟[J]. 地震地质, 2021, 43(4): 920-935. doi: 10.3969/j.issn.0253-4967.2021.04.012

    HE Xinjuan, PAN Hua. Simulation of strong ground motion from the 2021 Yangbi, Yunnan Ms6.4 earthquake[J]. Seismology and Geology, 2021, 43(4): 920-935. (in Chinese) doi: 10.3969/j.issn.0253-4967.2021.04.012
    [6]
    周红, 李亚南, 常莹. 云南漾濞6.4级地震强地面运动的模拟和空间分布特征分析[J]. 地球物理学报, 2021, 64(12): 4526-4537. doi: 10.6038/cjg2021P0421

    ZHOU Hong, LI Yanan, CHANG Ying. Simulation and analysis of spatial distribution characteristics of strong ground motions by the 2021 Yangbi, Yunnan Province MS6.4 earthquake[J]. Chinese Journal of Geophysics, 2021, 64(12): 4526-4537. (in Chinese) doi: 10.6038/cjg2021P0421
    [7]
    BA Z N, et al. The dynamic stiffness matrix method for seismograms synthesis for layered transversely isotropic half-space[J]. Applied Mathematical Modelling, 2022, 104: 205-227. doi: 10.1016/j.apm.2021.11.022
    [8]
    MCCALLEN D, PETERSSON A, RODGERS A, et al. EQSIM—a multidisciplinary framework for fault-to-structure earthquake simulations on exascale computers part Ⅰ: Computational models and workflow[J]. Earthquake Spectra, 2021, 37(2): 707-735. doi: 10.1177/8755293020970982
    [9]
    BA Z N, SANG Q Z, WU M T, et al. The revised direct stiffness matrix method for seismogram synthesis due to dislocations: from crustal to geotechnical scale[J]. Geophysical Journal International, 2021, 227(1): 717-734. doi: 10.1093/gji/ggab248
    [10]
    曹泽林, 陶夏新, 陶正如. 2021年玛多7.4级地震近断裂三分量地震动场合成[J]. 世界地震工程, 2021, 37(4): 1-11. doi: 10.3969/j.issn.1007-6069.2021.04.001

    CAO Zelin, TAO Xiaxin, TAO Zhengru. Simulation of three-component near-fault ground motions during the 2021 Maduo M7.4 earthquake[J]. World Earthquake Engineering, 2021, 37(4): 1-11. (in Chinese) doi: 10.3969/j.issn.1007-6069.2021.04.001
    [11]
    SOMERVILLE P, IRIKURA K, GRAVES R, et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismological Research Letters, 1999, 70(1): 59-80. doi: 10.1785/gssrl.70.1.59
    [12]
    GALLOVIČ F, BROKEŠOVÁ J. On strong ground motion synthesis with k[J]. Journal of Seismology, 2004, 8(2): 211-224. doi: 10.1023/B:JOSE.0000021438.79877.58
    [13]
    GRAVES R W, PITARKA A. Broadband ground-motion simulation using a hybrid approach[J]. Bulletin of the Seismological Society of America, 2010, 100(5A): 2095-2123. doi: 10.1785/0120100057
    [14]
    GRAVES R, PITARKA A. Refinements to the Graves and pitarka (2010) broadband ground-motion simulation method[J]. Seismological Research Letters, 2015, 86(1): 75-80. doi: 10.1785/0220140101
    [15]
    WOLF J P. Dynamic Soil-Structure Interaction[M]. Englewood Cliffs NJ: Prentice-Hall, 1985.
    [16]
    KENNETT B L N. Seismic Wave Propagation in Stratified Media[M]. Cambridge: Cambridge University Press, 1983.
    [17]
    HUDSON J A. A quantitative evaluation of seismic signals at teleseismic distances—Ⅰ radiation from point sources[J]. Geophysical Journal International, 1969, 18(3): 233-249. doi: 10.1111/j.1365-246X.1969.tb03567.x
    [18]
    AKI K, RICHARDS P G. Quantitative Seismology[M]. 2nd ed. Sausalito, Calif: University Science Books, 2002.
    [19]
    姜伟, 陶夏新, 陶正如, 等. 有限断层震源模型局部参数定标律[J]. 地震工程与工程振动, 2017, 37(6): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201706003.htm

    JIANG Wei, TAO Xiaxin, TAO Zhengru, et al. Scaling laws of local parameters of finite fault source model[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(6): 23-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201706003.htm
    [20]
    MAI P M, BEROZA G C. A spatial random field model to characterize complexity in earthquake slip[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B11): ESE 10-1.
    [21]
    PITARKA A, MELLORS R J, WALTER W R, et al. Analysis of ground motion from an underground chemical explosion[J]. Bulletin of the Seismological Society of America, 2015, 105(5): 2390-2410. doi: 10.1785/0120150066
    [22]
    KAGAWA T, IRIKURA K, SOMERVILLE P G. Differences in ground motion and fault rupture process between the surface and buried rupture earthquakes[J]. Earth, Planets and Space, 2004, 56(1): 3-14. doi: 10.1186/BF03352486
    [23]
    俞言祥, 李山有, 肖亮. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术, 2013, 8(1): 24-33. doi: 10.3969/j.issn.1673-5722.2013.01.003

    YU Yanxiang, LI Shanyou, XIAO Liang. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 2013, 8(1): 24-33. (in Chinese) doi: 10.3969/j.issn.1673-5722.2013.01.003
  • Related Articles

    [1]XIN Gong-feng, ZHOU Hai-zuo, ZHANG Wen-liang, ZHENG Gang, YANG Xin-yu, YU Xiao-xuan, XU Shi-qian. Influences of column cap on progressive failure and stability characteristics of column-supported embankments[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 63-67. DOI: 10.11779/CJGE2022S1012
    [2]ZHANG Jiang-wei, LI Xiao-jun, WANG Xiao-ming, CHI Ming-jie, WANG Yu-shi. Method for judging seismic stability state of soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2096-2102. DOI: 10.11779/CJGE201811016
    [3]ZHAO Ming-hua, XIA Run-yan, YIN Ping-bao, YANG Chao-wei, XU Zhuo-jun. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005-1011. DOI: 10.11779/CJGE201406003
    [4]WANG Zhe, ZHUANG Yingchun. Analytical analysis of vertical load-transfer of large-diameter cast-in-situ concrete tubular piles[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1488-1492.
    [5]LOU Xiaoming, SUN Xiaofeng. Analysis on load transfer for large area composite foundation with rigid piles and cushions[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2027-2030.
    [6]ZHANG Fan, GONG Weiming, DAI Guoliang. Experimental research on the load transfer mechanism of super-long large diameter bored pile with the self-balanced load test method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 464-469.
    [7]WANG Zhe, ZHOU Jian, GONG Xiaonan. Analysis of axial load-transfer of large-diameter tubular pile using cast-in-situ concrete[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1185-1189.
    [8]HAN Xuan, ZHANG Nairui. In-situ tests on load transfer mechanism of group piled foundation in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 74-80.
    [9]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
    [10]Liu Songyu, Ji Peng, Wei Jie. Load transfer behavior of large diameter cast in place pile embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 61.
  • Cited by

    Periodical cited type(3)

    1. 刘鑫,董广阳,史旦达. 考虑颗粒破碎的砂土中鱼雷锚贯入离散元分析. 水文地质工程地质. 2024(01): 91-101 .
    2. 叶尖峰,韩聪聪,刘君. 组合动力锚水动力特性数值模拟研究. 海洋工程. 2023(01): 39-47 .
    3. 胡伟,王辉,姚琛,郝冬雪,史旦达. 砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究. 岩土力学. 2023(06): 1811-1825 .

    Other cited types(5)

Catalog

    Article views (254) PDF downloads (65) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return