Citation: | WANG Liyan, JI Wenwei, TAO Yunxiang, TANG Yue, WANG Binghui, LIU Yi, WU Silin. Comparative study on seismic performances of vertical waste tire-faced retaining walls (unreinforced/reinforced)[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 273-282. DOI: 10.11779/CJGE20211400 |
[1] |
SAYÃO A, GERSCOVICH D, MEDEIROS L, et al. Scrap tire—an attractive material for gravity retaining walls and soil reinforcement[J]. The Journal of Solid Waste Technology and Management, 2009, 35(3): 135-155. doi: 10.5276/JSWTM.2009.135
|
[2] |
曾玉珍, 廖正环. 废旧轮胎在国外道路工程中的应用[J]. 国外公路, 2000, 20(1): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200001009.htm
ZENG Yuzhen, LIAO Zhenghuan. Application of waste tires in road engineering abroad[J]. Journal of Foreign Highway, 2000, 20(1): 39-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200001009.htm
|
[3] |
HUANG Y, BIRD R N, HEIDRICH O. A review of the use of recycled solid waste materials in asphalt pavements[J]. Resources, Conservation and Recycling, 2007, 52(1): 58-73. doi: 10.1016/j.resconrec.2007.02.002
|
[4] |
TSAI W T. Analysis of the sustainability of reusing industrial wastes as energy source in the industrial sector of Taiwan[J]. Journal of Cleaner Production, 2010, 18(14): 1440-1445. doi: 10.1016/j.jclepro.2010.05.004
|
[5] |
KARDOS A J, DURHAM S A. Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications[J]. Construction and Building Materials, 2015, 98: 832-845. doi: 10.1016/j.conbuildmat.2015.08.065
|
[6] |
ABBASPOUR M, AFLAKI E, MOGHADAS NEJAD F. Reuse of waste tire textile fibers as soil reinforcement[J]. Journal of Cleaner Production, 2019, 207: 1059-1071. doi: 10.1016/j.jclepro.2018.09.253
|
[7] |
李丽华, 崔飞龙, 肖衡林, 等. 轮胎与格室加筋路堤性能及承载力研究[J]. 岩土工程学报, 2017, 39(1): 81-88. doi: 10.11779/CJGE201701006
LI Lihua, CUI Feilong, XIAO Henglin, et al. Performance and bearing capacity of embankments reinforced with waste tires and geocells[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 81-88. (in Chinese) doi: 10.11779/CJGE201701006
|
[8] |
GARGA V K, O'SHAUGHNESSY V. Tire-reinforced earthfill: Part 1 construction of a test fill, performance, and retaining wall design[J]. Canadian Geotechnical Journal, 2000, 37(1): 75-96. doi: 10.1139/t99-084
|
[9] |
RETTERER T A. Gravity and Mechanically Stabilized Earth Wall Using Whole Scrap Tires[D]. Lubbock: Texas Tech University, 2000.
|
[10] |
马源. 废旧轮胎—土复合体力学性能及工程应用研究[D]. 济南: 山东大学, 2018.
MA Yuan. Study on Mechanical Properties and Engineering Application of Scrap Tyre-Soil[D]. Jinan: Shandong University, 2018. (in Chinese)
|
[11] |
李春强, 付海洋. 废旧轮胎加筋土在支挡结构中位移影响因素分析研究[J]. 公路, 2019, 64(7): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201907003.htm
LI Chunqiang, FU Haiyang. Analysis on displacement influence factors of reinforced earth in retaining structure[J]. Highway, 2019, 64(7): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201907003.htm
|
[12] |
陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. http://cge.nhri.cn/cn/article/id/11904
CHEN Guoxing, WANG Zhihua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese) http://cge.nhri.cn/cn/article/id/11904
|
[13] |
MURALI KRISHNA A, MADHAVI LATHA G. Seismic response of wrap-faced reinforced soil-retaining wall models using shaking table tests[J]. Geosynthetics International, 2007, 14(6): 355-364. doi: 10.1680/gein.2007.14.6.355
|
[14] |
刘思宏, 贾凡, 陈笑林, 等. 土工袋挡墙振动台模型试验研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 4338-4347. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2056.htm
LIU Sihong, JIA Fan, CHEN Xiaolin. Shaking table model test on a retaining wall of soilbags[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4338-4347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2056.htm
|
[15] |
李劲松. 考虑回填料影响的悬臂式挡土墙抗震性能试验研究[D]. 镇江: 江苏科技大学, 2020.
LI Jinsong. Experimental Study on Seismic Performance of Cantilever Retaining Wall Considering the Influence of Backfill[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. (in Chinese)
|
[16] |
巩文雪. 废旧轮胎+土工格栅加筋土挡墙的工作性能数值模拟与理论方法研究[D]. 镇江: 江苏科技大学, 2020.
GONG Wenxue. Numerical Simulation and Theoretical Method Research on Working Performance of Waste Tires+Geogrid Reinforced Earth Retaining Wall[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. (in Chinese)
|
[1] | DENG Huiyuan, WANG Rengui, SONG Erxiang, HUANG Liji, LIU Xiaodong, LIU Bo. Vertical bearing characteristics of foundation with barrette diaphragm wall in cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 200-204. DOI: 10.11779/CJGE2024S20023 |
[2] | HAN Ranran, QIAO Xiaoli, LI Mingyu. Field tests on vertical bearing characteristics of large-diameter extra-long steel pipe piles in offshore wind power projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 180-185. DOI: 10.11779/CJGE2024S10026 |
[3] | ZHANG Peng, TAN Li-xin, MA Bao-song. Formulae for frictional resistance considering mud thixotropy and pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2043-2049. DOI: 10.11779/CJGE201711012 |
[4] | WU Jiu-jiang, CHENG Qian-gong, WEN Hua, CAO Jian-lei. Vertical bearing behaviors of lattice shaped diaphragm walls and group piles as bridge foundations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1733-1744. DOI: 10.11779/CJGE201409022 |
[5] | HU Wen-hong, ZHENG Gang. Influence of shallow soil improvement on vertical bearing capacity of inclined piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 697-706. |
[6] | HOU Yong-mao. Vertical bearing behaviors of cellular diaphragm wall[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 701-708. |
[7] | TANG Jun-wei, ZHAO Chun-feng, ZHAO Cheng, LIU Kun, LIAO Qian-xu. Experimental study on influence of pile-tip soil on friction resistance[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 454-459. |
[8] | ZHENG Gang, WANG Li. Load transfer and bearing capacity of inclined pile under vertical load[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 323-330. |
[9] | ZHAO Minghua, CAO Wengui, LIU Qijian, YANG Minghui. Method of determination of vertical bearing capacity of rock-socketed pile by the settlement of pile top[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 67-71. |
[10] | Shi Peidong, Liang Jinyu. Vertical Bearing Capacity of Rock-socketed Piles[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 32-39. |
1. |
谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 .
![]() | |
2. |
刘朝阳,刘雪丹,朱牧原,方勇. 泥岩地层盾构改良渣土流动度评价试验. 铁道建筑. 2025(02): 89-94 .
![]() | |
3. |
贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 .
![]() | |
4. |
丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
![]() | |
5. |
周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 .
![]() | |
6. |
尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
![]() | |
7. |
万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 .
![]() | |
8. |
赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 .
![]() | |
9. |
孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 .
![]() | |
10. |
杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 .
![]() | |
11. |
QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 .
![]() |
|
12. |
占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 .
![]() | |
13. |
方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 .
![]() | |
14. |
孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 .
![]() | |
15. |
王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 .
![]() | |
16. |
周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 .
![]() | |
17. |
常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 .
![]() | |
18. |
孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 .
![]() | |
19. |
季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 .
![]() | |
20. |
周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 .
![]() | |
21. |
魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 .
![]() | |
22. |
杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 .
![]() | |
23. |
杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 .
![]() | |
24. |
王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 .
![]() | |
25. |
朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 .
![]() | |
26. |
马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 .
![]() | |
27. |
常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 .
![]() | |
28. |
张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 .
![]() | |
29. |
杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 .
![]() |