• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Liyan, JI Wenwei, TAO Yunxiang, TANG Yue, WANG Binghui, LIU Yi, WU Silin. Comparative study on seismic performances of vertical waste tire-faced retaining walls (unreinforced/reinforced)[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 273-282. DOI: 10.11779/CJGE20211400
Citation: WANG Liyan, JI Wenwei, TAO Yunxiang, TANG Yue, WANG Binghui, LIU Yi, WU Silin. Comparative study on seismic performances of vertical waste tire-faced retaining walls (unreinforced/reinforced)[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 273-282. DOI: 10.11779/CJGE20211400

Comparative study on seismic performances of vertical waste tire-faced retaining walls (unreinforced/reinforced)

More Information
  • Received Date: November 27, 2021
  • Available Online: February 23, 2023
  • In order to understand the seismic performances of waste tire-faced retaining walls and promote their popularization and application in high-intensity earthquake areas, a comparative experimental study on the seismic performance of vertical waste tire faced retaining walls (without/with reinforcement) is carried out. Based on the same test conditions, two shaking table test models for the vertical waste tire-faced retaining wall and the geogrid-reinforced waste tire-faced retaining wall are established respectively. Considering the effects of near-field Shifang seismic wave and far-field Songpan seismic wave, the wall accelerations, lateral displacements, residual deformations, vertical settlements and dynamic earth pressures acting on the back of the walls are studied under different seismic intensities. The response characteristics of two waste tire-faced retaining walls are compared with those of a traditional cantilever rigid retaining wall, and the overall seismic performances of tire-faced retaining walls are comprehensively evaluated. It is concluded that the seismic performances of the vertical waste tire-faced retaining wall (unreinforced) are weak, while the overall seismic performances of the vertical waste tire-faced retaining wall reinforced with geogrids are significantly improved.
  • [1]
    SAYÃO A, GERSCOVICH D, MEDEIROS L, et al. Scrap tire—an attractive material for gravity retaining walls and soil reinforcement[J]. The Journal of Solid Waste Technology and Management, 2009, 35(3): 135-155. doi: 10.5276/JSWTM.2009.135
    [2]
    曾玉珍, 廖正环. 废旧轮胎在国外道路工程中的应用[J]. 国外公路, 2000, 20(1): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200001009.htm

    ZENG Yuzhen, LIAO Zhenghuan. Application of waste tires in road engineering abroad[J]. Journal of Foreign Highway, 2000, 20(1): 39-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200001009.htm
    [3]
    HUANG Y, BIRD R N, HEIDRICH O. A review of the use of recycled solid waste materials in asphalt pavements[J]. Resources, Conservation and Recycling, 2007, 52(1): 58-73. doi: 10.1016/j.resconrec.2007.02.002
    [4]
    TSAI W T. Analysis of the sustainability of reusing industrial wastes as energy source in the industrial sector of Taiwan[J]. Journal of Cleaner Production, 2010, 18(14): 1440-1445. doi: 10.1016/j.jclepro.2010.05.004
    [5]
    KARDOS A J, DURHAM S A. Strength, durability, and environmental properties of concrete utilizing recycled tire particles for pavement applications[J]. Construction and Building Materials, 2015, 98: 832-845. doi: 10.1016/j.conbuildmat.2015.08.065
    [6]
    ABBASPOUR M, AFLAKI E, MOGHADAS NEJAD F. Reuse of waste tire textile fibers as soil reinforcement[J]. Journal of Cleaner Production, 2019, 207: 1059-1071. doi: 10.1016/j.jclepro.2018.09.253
    [7]
    李丽华, 崔飞龙, 肖衡林, 等. 轮胎与格室加筋路堤性能及承载力研究[J]. 岩土工程学报, 2017, 39(1): 81-88. doi: 10.11779/CJGE201701006

    LI Lihua, CUI Feilong, XIAO Henglin, et al. Performance and bearing capacity of embankments reinforced with waste tires and geocells[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 81-88. (in Chinese) doi: 10.11779/CJGE201701006
    [8]
    GARGA V K, O'SHAUGHNESSY V. Tire-reinforced earthfill: Part 1 construction of a test fill, performance, and retaining wall design[J]. Canadian Geotechnical Journal, 2000, 37(1): 75-96. doi: 10.1139/t99-084
    [9]
    RETTERER T A. Gravity and Mechanically Stabilized Earth Wall Using Whole Scrap Tires[D]. Lubbock: Texas Tech University, 2000.
    [10]
    马源. 废旧轮胎—土复合体力学性能及工程应用研究[D]. 济南: 山东大学, 2018.

    MA Yuan. Study on Mechanical Properties and Engineering Application of Scrap Tyre-Soil[D]. Jinan: Shandong University, 2018. (in Chinese)
    [11]
    李春强, 付海洋. 废旧轮胎加筋土在支挡结构中位移影响因素分析研究[J]. 公路, 2019, 64(7): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201907003.htm

    LI Chunqiang, FU Haiyang. Analysis on displacement influence factors of reinforced earth in retaining structure[J]. Highway, 2019, 64(7): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201907003.htm
    [12]
    陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89-97. http://cge.nhri.cn/cn/article/id/11904

    CHEN Guoxing, WANG Zhihua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89-97. (in Chinese) http://cge.nhri.cn/cn/article/id/11904
    [13]
    MURALI KRISHNA A, MADHAVI LATHA G. Seismic response of wrap-faced reinforced soil-retaining wall models using shaking table tests[J]. Geosynthetics International, 2007, 14(6): 355-364. doi: 10.1680/gein.2007.14.6.355
    [14]
    刘思宏, 贾凡, 陈笑林, 等. 土工袋挡墙振动台模型试验研究[J]. 岩石力学与工程学报, 2018, 37(增刊2): 4338-4347. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2056.htm

    LIU Sihong, JIA Fan, CHEN Xiaolin. Shaking table model test on a retaining wall of soilbags[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4338-4347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2018S2056.htm
    [15]
    李劲松. 考虑回填料影响的悬臂式挡土墙抗震性能试验研究[D]. 镇江: 江苏科技大学, 2020.

    LI Jinsong. Experimental Study on Seismic Performance of Cantilever Retaining Wall Considering the Influence of Backfill[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. (in Chinese)
    [16]
    巩文雪. 废旧轮胎+土工格栅加筋土挡墙的工作性能数值模拟与理论方法研究[D]. 镇江: 江苏科技大学, 2020.

    GONG Wenxue. Numerical Simulation and Theoretical Method Research on Working Performance of Waste Tires+Geogrid Reinforced Earth Retaining Wall[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. (in Chinese)
  • Related Articles

    [1]DENG Huiyuan, WANG Rengui, SONG Erxiang, HUANG Liji, LIU Xiaodong, LIU Bo. Vertical bearing characteristics of foundation with barrette diaphragm wall in cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 200-204. DOI: 10.11779/CJGE2024S20023
    [2]HAN Ranran, QIAO Xiaoli, LI Mingyu. Field tests on vertical bearing characteristics of large-diameter extra-long steel pipe piles in offshore wind power projects[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 180-185. DOI: 10.11779/CJGE2024S10026
    [3]ZHANG Peng, TAN Li-xin, MA Bao-song. Formulae for frictional resistance considering mud thixotropy and pipe-soil contact characteristics[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2043-2049. DOI: 10.11779/CJGE201711012
    [4]WU Jiu-jiang, CHENG Qian-gong, WEN Hua, CAO Jian-lei. Vertical bearing behaviors of lattice shaped diaphragm walls and group piles as bridge foundations in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1733-1744. DOI: 10.11779/CJGE201409022
    [5]HU Wen-hong, ZHENG Gang. Influence of shallow soil improvement on vertical bearing capacity of inclined piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 697-706.
    [6]HOU Yong-mao. Vertical bearing behaviors of cellular diaphragm wall[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 701-708.
    [7]TANG Jun-wei, ZHAO Chun-feng, ZHAO Cheng, LIU Kun, LIAO Qian-xu. Experimental study on influence of pile-tip soil on friction resistance[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 454-459.
    [8]ZHENG Gang, WANG Li. Load transfer and bearing capacity of inclined pile under vertical load[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 323-330.
    [9]ZHAO Minghua, CAO Wengui, LIU Qijian, YANG Minghui. Method of determination of vertical bearing capacity of rock-socketed pile by the settlement of pile top[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 67-71.
    [10]Shi Peidong, Liang Jinyu. Vertical Bearing Capacity of Rock-socketed Piles[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 32-39.
  • Cited by

    Periodical cited type(29)

    1. 谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 .
    2. 刘朝阳,刘雪丹,朱牧原,方勇. 泥岩地层盾构改良渣土流动度评价试验. 铁道建筑. 2025(02): 89-94 .
    3. 贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 .
    4. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
    5. 周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 .
    6. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    7. 万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 . 本站查看
    8. 赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 .
    9. 孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 .
    10. 杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 .
    11. QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 .
    12. 占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 . 本站查看
    13. 方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 . 本站查看
    14. 孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 .
    15. 王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 .
    16. 周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 .
    17. 常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 .
    18. 孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 .
    19. 季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 .
    20. 周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 .
    21. 魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 .
    22. 杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 .
    23. 杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 .
    24. 王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 .
    25. 朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 .
    26. 马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 .
    27. 常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 .
    28. 张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 .
    29. 杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 .

    Other cited types(11)

Catalog

    Article views (303) PDF downloads (73) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return