• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xuezeng, LI Zhen, YOU Guiliang, YANG Zhilu, YANG Xueliang, SANG Yunlong. Experimental study on reinforcement effects of bonded steel plates of highway tunnels under different damage degrees[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 243-251. DOI: 10.11779/CJGE20211268
Citation: LIU Xuezeng, LI Zhen, YOU Guiliang, YANG Zhilu, YANG Xueliang, SANG Yunlong. Experimental study on reinforcement effects of bonded steel plates of highway tunnels under different damage degrees[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 243-251. DOI: 10.11779/CJGE20211268

Experimental study on reinforcement effects of bonded steel plates of highway tunnels under different damage degrees

More Information
  • Received Date: October 27, 2021
  • Available Online: February 23, 2023
  • The cracking damage of linings is a common damage form of tunnels, which directly affects the bearing capacity of the structure. The reinforcement of bonded steel plates is widely used as the structural reinforcement, but there are few researches on the bearing capacity of the highway tunnels after reinforcement and the reinforcement effects under different damage degrees. The 1∶10 model loading tests are used to study the bearing capacity, mechanical deformation characteristics and failure process of the reinforced highway tunnel structure under different damage degrees, and the reinforcement effects and time are analyzed. The results show that: (1) The deformation process of the original and reinforced structures under loose loads can be divided into four stages, but the failure characteristics and forms are different. (2) When the residual bearing capacity is 50%F and 30%F (F is the ultimate bearing capacity of the original structure), the failure loads are strengthened and increase by 50% and 51% compared with those of the original structure. The steel plates applied before the failure of the structure can effectively improve its ultimate bearing capacity and are less affected by the loads at the reinforcement point. When the residual bearing capacity is 50%F and 30%F, the final deformations increase by 59% and 56% compared with those of the original structure, which can reduce the risk of brittle failure. (3) The failure mode of the reinforced structure is large eccentric compression failure of the vault. (4) When the reinforcement is too late, the steel plates will be difficult to effectively bond or cooperatively deform for a long time due to the surface cracks and deformation speed of the linings, resulting in accelerated failure. It is suggested that the residual bearing capacity of the structure should be between 62%F and 50%F as the reasonable reinforcement time for the highway tunnels.
  • [1]
    李彬, 雷明锋, 李文华. 运营公路隧道病害对衬砌结构安全性的影响[J]. 铁道科学与工程学报, 2011, 8(5): 40-45. doi: 10.3969/j.issn.1672-7029.2011.05.008

    LI Bin, LEI Mingfeng, LI Wenhua. Safety influence of operating highway tunnel caused by sturcture disease[J]. Journal of Railway Science and Engineering, 2011, 8(5): 40-45. (in Chinese) doi: 10.3969/j.issn.1672-7029.2011.05.008
    [2]
    艾青, 王琨, 姜孝谟, 等. 基于损伤累积模型的公路隧道渗漏水病害诊断与预测[J]. 隧道与地下工程灾害防治, 2021, 3(1): 37-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202101006.htm

    AI Qing, WANG Kun, JIANG Xiaomo, et al. Diagnosis and prediction of the leakage in highway tunnel based on damage accumulation model[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 37-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202101006.htm
    [3]
    刘永华. 高速公路隧道安全性评价研究[D]. 成都: 西南交通大学, 2004.

    LIU Yonghua. Study on Safety Estimation of Expressway Tunnel[D]. Chengdu: Southwest Jiaotong University, 2004. (in Chinese)
    [4]
    YUAN Y, JIANG X M, LIU X. Predictive maintenance of shield tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38: 69-86. doi: 10.1016/j.tust.2013.05.004
    [5]
    刘学增, 王煦霖, 何本国. 隧道不同损伤衬砌套拱加固对比试验研究[J]. 中南大学学报(自然科学版), 2015, 46(12): 4610-4617. doi: 10.11817/j.issn.1672-7207.2015.12.030

    LIU Xuezeng, WANG Xulin, HE Benguo. Comparative experiment of reinforcement of lining under different damage states with arch surround for tunnel[J]. Journal of Central South University (Science and Technology), 2015, 46(12): 4610-4617. (in Chinese) doi: 10.11817/j.issn.1672-7207.2015.12.030
    [6]
    刘学增, 刘文艺, 桑运龙, 等. 叠合式套拱加固带裂损衬砌的破坏机制研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4244-4251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2074.htm

    LIU Xuezeng, LIU Wenyi, SANG Yunlong, et al. Research on failure mechanism of cracked lining reinforced with stacked inner lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4244-4251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2074.htm
    [7]
    刘学增, 桑运龙, 包浩杉. 叠合式套拱加固带裂缝隧道衬砌受力机理分析[J]. 土木工程学报, 2013, 46(10): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201310018.htm

    LIU Xuezeng, SANG Yunlong, BAO Haoshan. Analysis of bearing mechanism of cracked tunnel lining reinforced with stacked umbrella arch[J]. China Civil Engineering Journal, 2013, 46(10): 127-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201310018.htm
    [8]
    苏臣宏, 安楠楠, 王志丰. 公路隧道喷射混凝土套拱加固结构力学特性[J]. 建筑科学与工程学报, 2020, 37(5): 203-213. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005021.htm

    SU Chenhong, AN Nannan, WANG Zhifeng. Mechanical characteristics of shotcrete arch reinforcement structure in highway tunnel[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 203-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005021.htm
    [9]
    苏臣宏, 崔一纬, 吴亚磊, 等. 喷射混凝土套拱加固方法的现场测试与分析[J]. 西安工业大学学报, 2020, 40(2): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGY202002007.htm

    SU Chenhong, CUI Yiwei, WU Yalei, et al. Field test and analysis of shotcrete arch reinforcement method[J]. Journal of Xi'an Technological University, 2020, 40(2): 176-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGY202002007.htm
    [10]
    李晓琴, 张田, 丁祖德, 等. ECC套拱加固不同损伤衬砌的数值模拟研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3654-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2040.htm

    LI Xiaoqin, ZHANG Tian, DING Zude, et al. Numerical study on ECC arch strengthened linings with different damaged levels[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3654-3664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2040.htm
    [11]
    吴启勇, 蔡叶澜. 碳纤维布在连拱隧道衬砌裂缝病害治理中的应用[J]. 现代隧道技术, 2006, 43(6): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200606013.htm

    WU Qiyong, CAI Yelan. Applying carbon fiber cloths to repair lining cracks in a doublearched tunnel[J]. Modern Tunnelling Technology, 2006, 43(6): 70-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD200606013.htm
    [12]
    刘学增, 周若阳, 游贵良, 等. Ⅵ级围岩公路隧道衬砌粘贴钢板和粘贴碳纤维布加固方法对比试验研究[J]. 科学技术与工程, 2017, 17(34): 130-135. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201734021.htm

    LIU Xuezeng, ZHOU Ruoyang, YOU Guiliang, et al. Comparative experimental study on reinforcement of highway tunnel lining by bonding steel plate and bonding carbon-fiber-reinforced plastics under Ⅵ grade surrounding rock[J]. Science Technology and Engineering, 2017, 17(34): 130-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201734021.htm
    [13]
    罗立娜. 碳纤维补强条件下公路隧道衬砌计算方法的研究[D]. 上海: 同济大学, 2006.

    LUO Lina. On the Calculation Method of CFRP Strengthened Highway Tunnel Lining[D]. Shanghai: Tongji University, 2006. (in Chinese)
    [14]
    何川, 唐志成, 汪波, 等. 内表面补强对缺陷病害隧道结构承载力影响的模型试验研究[J]. 岩土力学, 2009, 30(2): 406-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200902025.htm

    HE Chuan, TANG Zhicheng, WANG Bo, et al. Research on effect of inner surface reinforcing on structure bearing capacity by model test in defective tunnel[J]. Rock and Soil Mechanics, 2009, 30(2): 406-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200902025.htm
    [15]
    CHEN H, LAI H P, QIU Y L, et al. Reinforcing distressed lining structure of highway tunnel with bonded steel plates: case study[J]. Journal of Performance of Constructed Facilities, 2020, 34(1): 04019082.
    [16]
    张东, 范蕾, 苟浩洋. 隧道局部欠厚衬砌对结构受力影响与加固技术研究[J]. 交通节能与环保, 2019, 15(4): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CBJL201904031.htm

    ZHANG Dong, FAN Lei, GOU Haoyang. Study on the influence of insufficient lining ThickNess on bearing capacity of tunnel structure and the reinforcing technology[J]. Transport Energy Conservation & Environmental Protection, 2019, 15(4): 106-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBJL201904031.htm
    [17]
    KAZUAKI K, MINORU K, TSUTOMU T, et al. Structure and construction examples of tunnel reinforcement method using thin steel panels[J]. Nippon Steel Technical Report, 2005, 92: 45-50.
    [18]
    公路隧道设计规范: JTG D70—2004[S]. 北京: 人民交通出版社, 2004.

    Code for Design of Road Tunnel: JTG D70—2004[S]. Beijing: China Communications Press, 2004. (in Chinese)
    [19]
    郑涛. 岩土工程模型试验的理论与方法[J]. 矿业快报, 2008, 24(3): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200803008.htm

    ZHENG Tao. Discussion on theory and method of model experiment in geotechnical engineering[J]. Express Information of Mining Industry, 2008, 24(3): 18-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200803008.htm
    [20]
    工程结构加固材料安全性鉴定技术规范: GB 50728—2011[S]. 北京: 中国建筑工业出版社, 2012.

    Technical Code for Safety Appraisal of Engineering Structural Strengthening Materials: GB 50728—2011[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)

Catalog

    Article views (240) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return