Citation: | CAI Yang, LI Lin, LU Yi. Measuring absolute volume of triaxial soil specimens[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2300-2307. DOI: 10.11779/CJGE202112017 |
[1] |
JI E, ZHU J, CHEN S, et al. Analytical solution and experimental study of membrane penetration in triaxial test[J]. Geomechanics and Engineering, 2017, 13(6): 1027-1044.
|
[2] |
BISHOP A W. The Experimental Study of Partly Saturated Soil in the Triaxial Apparatus[C]//Proc 5th Int Conf Soil Mech Found Eng, 1961, Paris.
|
[3] |
ROMERO E, FACIO J A, LLORET A, et al. A New Suction and Temperature Controlled Triaxial Apparatus[C]//Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering. 1997, Hamburg.
|
[4] |
KLOTZ E, COOP M. On the identification of critical state lines for sands[J]. Geotechnical Testing Journal, 2002, 25(3): 289-302.
|
[5] |
LAUDAHN A, SOSNA K, BOHAC J. A simple method for air volume change measurement in triaxial tests[J]. Geotechnical Testing Journal, 2005, 28(3): 313-318.
|
[6] |
MACARI E, PARKER J, COSTES N. Measurement of volume changes in triaxial tests using digital imaging techniques[J]. Geotechnical Testing Journal, 1997, 20(1): 103-109. doi: 10.1520/GTJ11424J
|
[7] |
LIN H, PENUMADU D. Strain localization in combined axial-torsional testing on Kaolin clay[J]. Journal of Engineering Mechanics, 2006, 132(5): 555-564. doi: 10.1061/(ASCE)0733-9399(2006)132:5(555)
|
[8] |
GACHET P, GEISER F, LALOUI L, et al. Automated digital image processing for volume change measurement in triaxial cells[J]. Geotechnical Testing Journal, 2007, 30(2): 98-103.
|
[9] |
UCHAIPICHAT A, KHALILI N, ZARGARBASHI S, et al. A temperature controlled triaxial apparatus for testing unsaturated soils[J]. Geotechnical Testing Journal, 2011, 34(5): 424-432.
|
[10] |
邵龙潭, 郭晓霞, 刘港, 等. 数字图像测量技术在土工三轴试验中的应用[J]. 岩土力学, 2015, 36(增刊1): 669-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1117.htm
SHAO Long-tan, GUO Xiao-xia, LIU Gang, et al. Application of digital image processing technique to measuring specimen deformation in triaxial test[J]. Rock and Soil Mechanics, 2015, 36(S1): 669-684. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S1117.htm
|
[11] |
邵龙潭, 刘潇, 郭晓霞, 等. 土工三轴试验试样全表面变形测量的实现[J]. 岩土工程学报, 2012, 34(3): 409-415. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203008.htm
SHAO Long-tan, LIU Xiao, GUO Xiao-xia, et al. Whole surface deformation measurement of triaxial soil specimen based on digital image processing[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 409-415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201203008.htm
|
[12] |
BHANDARI A, POWRIE W, HARKNESS R. A digital image-based deformation measurement system for triaxial tests[J]. Geotechnical Testing Journal, 2012, 35(2): 209-226.
|
[13] |
WANG P P, GUO X X, SANG Y, et al. Measurement of local and volumetric deformation in geotechnical triaxial testing using 3D-digital image correlation and a subpixel edge detection algorithm[J]. Acta Geotechnica, 2020, 15(10): 2891-2904.
|
[14] |
SALAZAR S E, COFFMAN R A. Consideration of internal board camera optics for triaxial testing applications[J]. Geotechnical Testing Journal, 2015, 38(1): 20140163.
|
[15] |
SALAZAR S E, BARNES A, COFFMAN R A. Development of an internal camera-based volume determination system for triaxial testing[J]. Geotechnical Testing Journal, 2015, 38(4): 20140249.
|
[16] |
ZHANG X, LI L, CHEN G, et al. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing[J]. Acta Geotechnica, 2015, 10(1): 55-82.
|
[17] |
LI L, ZHANG X, CHEN G, et al. Measuring unsaturated soil deformations during triaxial testing using a photogrammetry-based method[J]. Canadian Geotechnical Journal, 2016, 53(3): 472-489.
|
[18] |
LI L, ZHANG X. A new triaxial testing system for unsaturated soil characterization[J]. Geotechnical Testing Journal, 2015, 38(6): 20140201.
|
[19] |
LI L, ZHANG X. Factors influencing the accuracy of the photogrammetry-based deformation measurement method[J]. Acta Geotechnica, 2019, 14(2): 559-574.
|
[20] |
LI L, LU Y, CAI Y, et al. A calibration technique to improve accuracy of the photogrammetry-based deformation measurement method for triaxial testing[J]. Acta Geotechnica, 2021, 16(4): 1053-1060.
|
[21] |
FAYEK S, XIA X, LI L, et al. A photogrammetry-based approach to determine the absolute volume of soil specimen during triaxial testing[J]. Journal of the Transportation Research Board, 2020, 2674(8): 206-218.
|
[22] |
BALDI G, NOVA R. Membrane penetration effects in triaxial testing[J]. Journal of Geotechnical Engineering, 1984, 110(3): 403-420.
|
[23] |
[1] | Time-varying reliability analysis of unsaturated reservoir bank slope under water level drop considering multi-parameter spatial variability[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20230884 |
[2] | DENG Zhi-ping, LI Dian-qing, CAO Zi-jun, PHOON Kok Kwang. Slope reliability analysis considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 986-995. DOI: 10.11779/CJGE201706003 |
[3] | JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014 |
[4] | XUE Ya-dong, FANG Chao, GE Jia-cheng. Slope reliability in anisotropic random fields[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 77-82. |
[5] | LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, PHOON Kok Kwang. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. |
[6] | SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916. |
[7] | YANG Lingqiang, MA Jing, ZHANG Sherong. Reliability analysis of stability for slopes reinforced by anti-slide piles[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1299-1302. |
[8] | YAN Shuwang, ZHU Hongxia, LIU Run. Study on application of random field theory to reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2053-2059. |
[9] | LIU Run, YAN Shuwang. Random field model and reliability analysis of foundation soil in Bohai gulf[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 464-467. |
[10] | Liu Ning, Guo Zhichuan, Luo Boming. Probabilistic analysis and reliability assessment for foundation settlement[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 143-150. |
1. |
胡静静,余丁浩,李钢,王睿,张晗,苏璞. 考虑土-结相互作用的大型结构高效地震分析方法. 工程力学. 2024(03): 135-149 .
![]() | |
2. |
邓铭江,孙奔博,许佳. 高沥青混凝土心墙坝抗震安全评估研究进展. 水力发电学报. 2023(03): 82-91 .
![]() | |
3. |
刘京茂,邵伟峰,邹德高,屈永倩,迟福东. 基于弹塑性模型参数反演的高土石坝地震响应预测. 人民长江. 2023(09): 184-190+205 .
![]() | |
4. |
张亚国,肖书雄,杨赟,李同录. 一种状态变量相关的非饱和接触面弹塑性模型及验证. 岩土工程学报. 2023(10): 2081-2090 .
![]() | |
5. |
左双英,付丽,陈世万,吴道勇. 基于Interface改进算法的水工隧洞衬砌受力分析. 华中科技大学学报(自然科学版). 2022(01): 99-104 .
![]() | |
6. |
王雅甜,杨春山,黄福杰. 紧邻既有结构的灌注桩施工力学行为研究. 南昌工程学院学报. 2022(03): 41-46 .
![]() | |
7. |
邹德高,彭俊,李俊超,陈涛,刘京茂,王建全,陈楷. 沥青混凝土面板堆石坝强震变形模式和极限抗震能力分析. 水电与抽水蓄能. 2022(06): 15-20 .
![]() | |
8. |
邹德高,刘京茂,汪玉冰,李俊超,李多,陈涛,王锋. 西部某水电站覆盖层地基离心机动力试验数值模拟. 水电与抽水蓄能. 2021(01): 23-27 .
![]() |