• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zi-shan, WANG Shu-hong, WANG Peng-yu, WANG Cun-gen. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
Citation: ZHANG Zi-shan, WANG Shu-hong, WANG Peng-yu, WANG Cun-gen. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010

Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes

More Information
  • Received Date: March 07, 2021
  • Available Online: November 30, 2022
  • As an important prerequisite for modeling the high steep rocky slope, a fast and accurate parametric modeling for fracture networks of rocky slopes has become a popular research topic in recent years. Focusing on the deep learning and intelligent algorithmic clustering method, a UAV photography-based joint detection technique is proposed to identify and extract the geometric parameters of the fracture network on high steep slope surface. A dilated convolution is adopted to improve the traditional U-net segmentation network, and a GMM-EM algorithm is employed to cluster the segmented fractures on the binary images. Finally, a RANSAC algorithm is used to perform the extraction process of geometric parameter of the fracture network. Seen from the comparative results of DICE similar index, the accuracy of segmentation recognition is more than 97%, which shows that the proposed fracture extraction technique is more efficient and accurate than other traditional algorithms. The improved technique is applied to the slope of Lukuishan open pit, implementing the in-site rapid data extraction of fracture networks on the slope surface. This technique may provide an effective technical support for the refined modeling of high and steep rocky slopes.
  • [1]
    ZHANG P, LI J H, YANG X, et al. Semi-automatic extraction of rock discontinuities from point clouds using the ISODATA clustering algorithm and deviation from mean elevation[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 76-87. doi: 10.1016/j.ijrmms.2018.07.009
    [2]
    LATO M J, VÖGE M. Automated mapping of rock discontinuities in 3D lidar and photogrammetry models[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 54: 150-158. doi: 10.1016/j.ijrmms.2012.06.003
    [3]
    GUO J T, LIU Y H, WU L X, et al. A geometry- and texture-based automatic discontinuity trace extraction method for rock mass point cloud[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 124: 104132. doi: 10.1016/j.ijrmms.2019.104132
    [4]
    ZHANG P, DU K, TANNANT D D, et al. Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass[J]. Engineering Geology, 2018, 239: 109-118. doi: 10.1016/j.enggeo.2018.03.020
    [5]
    VÖGE M, LATO M J, DIEDERICHS M S. Automated rockmass discontinuity mapping from 3-dimensional surface data[J]. Engineering Geology, 2013, 164: 155-162. doi: 10.1016/j.enggeo.2013.07.008
    [6]
    CHEN J Q, ZHU H H, LI X J. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud[J]. Computers & Geosciences, 2016, 95: 18-31.
    [7]
    WANG S H, ZHANG Z S, WANG C G, et al. Multistep rocky slope stability analysis based on unmanned aerial vehicle photogrammetry[J]. Environmental Earth Sciences, 2019, 78: 260. doi: 10.1007/s12665-019-8145-z
    [8]
    CHEN N, KEMENY J, JIANG Q H, et al. Automatic extraction of blocks from 3D point clouds of fractured rock[J]. Computers & Geosciences, 2017, 109: 149-161.
    [9]
    贾曙光, 金爱兵, 赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用[J]. 岩土力学, 2018, 39(3): 1130-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803044.htm

    JIA Shu-guang, JIN Ai-bing, ZHAO Yi-qing. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope[J]. Rock and Soil Mechanics, 2018, 39(3): 1130-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803044.htm
    [10]
    PAN D D, LI S C, XU Z H, et al. A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: development and case study[J]. Engineering Geology, 2019, 262: 105310. doi: 10.1016/j.enggeo.2019.105310
    [11]
    张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm

    ZHANG Shun, GONG Yi-hong, WANG Jin-jun. The development of deep convolution neural network and its applications on computer vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201903001.htm
    [12]
    李尧, 李术才, 刘斌, 等. 基于改进后向投影算法的地质雷达探测岩体裂隙的成像方法[J]. 岩土工程学报, 2016, 38(8): 1425-1433. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608009.htm

    LI Yao, LI Shu-cai, LIU Bin, et al. Imaging method of ground penetrating radar for rock fracture detection based on improved back projection algorithm[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1425-1433. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608009.htm
    [13]
    ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
    [14]
    薛亚东, 李宜城. 基于深度学习的盾构隧道衬砌病害识别方法[J]. 湖南大学学报(自然科学版), 2018, 45(3): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803012.htm

    XUE Ya-dong, LI Yi-cheng. A method of disease recognition for shield tunnel lining based on deep learning[J]. Journal of Hunan University (Natural Sciences), 2018, 45(3): 100-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201803012.htm
    [15]
    黄宏伟, 李庆桐. 基于深度学习的盾构隧道渗漏水病害图像识别[J]. 岩石力学与工程学报, 2017, 36(12): 2861-2871. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm

    HUANG Hong-wei, LI Qing-tong. Image recognition for water leakage in shield tunnel based on deep learning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2861-2871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712001.htm
    [16]
    朱大庆, 曹国. 基于全卷积网络的砂石图像粒径检测[J]. 计算机与现代化, 2020(7): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202007021.htm

    ZHU Da-qing, CAO Guo. Particle size detection of sandstone images based on full convolutional network[J]. Computer and Modernization, 2020(7): 111-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202007021.htm
    [17]
    薛东杰, 唐麒淳, 王傲, 等. 基于FCN的岩石混凝土裂隙几何智能识别[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3393-3403. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2014.htm

    XUE Dong-jie, TANG Qi-chun, WANG Ao, et al. FCN-based intelligent identification of crack geometry in rock or concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3393-3403. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2014.htm
    [18]
    王鹏宇, 王述红. 四类常见边坡岩石类别识别和边界范围确定的方法[J]. 岩土工程学报, 2019, 41(8): 1505-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm

    WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm
    [19]
    RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer- Assisted Intervention-MICCAI 2015, 2015. doi: 10.1007/978-3-319-24574-4_28.
    [20]
    FABRESSE F R, CABALLERO F, MAZA I, et al. An efficient approach for undelayed range-only SLAM based on Gaussian mixtures expectation[J]. Robotics and Autonomous Systems, 2018, 104: 40-55.
    [21]
    SCHNABEL R, WAHL R, KLEIN R. Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2): 214-226.
    [22]
    王述红, 张紫杉, 王存根, 等. 岩体结构面产状随机分布空间表征[J]. 东北大学学报(自然科学版), 2017, 38(1): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201701025.htm

    WANG Shu-hong, ZHANG Zi-shan, WANG Cun-gen, et al. Stochastic spatial characterization of structural plane occurrence in rockmass[J]. Journal of Northeastern University (Natural Science), 2017, 38(1): 121-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201701025.htm

Catalog

    Article views (321) PDF downloads (330) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return