Citation: | CUI Wei, WEI Jie, WANG Chao, WANG Xiao-hua, ZHANG She-rong. Discrete element simulation of collapse characteristics of particle column considering gradation and shape[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230-2239. DOI: 10.11779/CJGE202112009 |
[1] |
刘广煜, 徐文杰, 佟彬, 等. 基于块体离散元的高速远程滑坡灾害动力学研究[J]. 岩石力学与工程学报, 2019, 38(8): 1557-1566. doi: 10.13722/j.cnki.jrme.2019.0158
LIU Guang-yu, XU Wen-jie, TONG Bin, et al. Study on dynamics of high-speed and long Run-out landslide hazards based on block discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1557-1566. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0158
|
[2] |
MARKS B, ROGNON P, EINAV I. Grainsize dynamics of polydisperse granular segregation down inclined planes[J]. Journal of Fluid Mechanics, 2012, 690: 499-511. doi: 10.1017/jfm.2011.454
|
[3] |
张雪, 盛岱超. 一种模拟土体流动的连续体数值方法[J]. 岩土工程学报, 2016, 38(3): 562-569. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603025.htm
ZHANG Xue, SHENG Dai-chao. Continuum approach for modelling soil flow in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 562-569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603025.htm
|
[4] |
OREFICE L, KHINAST J G. Deformable and breakable DEM particle clusters for modelling compression of plastic and brittle porous materials—Model and structure properties[J]. Powder Technology, 2020, 368: 90-104. doi: 10.1016/j.powtec.2020.04.035
|
[5] |
ZENIT R. Computer simulations of the collapse of a granular column[J]. Physics of Fluids, 2005, 17(3): 31703. doi: 10.1063/1.1862240
|
[6] |
LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(4 Pt 1): 041301.
|
[7] |
UTILI S, ZHAO T, HOULSBY G T. 3D DEM investigation of granular column collapse: Evaluation of debris motion and its destructive power[J]. Engineering Geology, 2015, 186: 3-16. doi: 10.1016/j.enggeo.2014.08.018
|
[8] |
PHILLIPS J C, HOGG A J, KERSWELL R R, et al. Enhanced mobility of granular mixtures of fine and coarse particles[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 466-480.
|
[9] |
张成功, 尹振宇, 吴则祥, 等. 颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J]. 岩土力学, 2019, 40(3): 1197-1203. doi: 10.16285/j.rsm.2017.2065
ZHANG Cheng-gong, YIN Zhen-yu, WU Ze-xiang, et al. Three-dimensional discrete element simulation of influence of particle shape on granular column collapse[J]. Rock and Soil Mechanics, 2019, 40(3): 1197-1203. (in Chinese) doi: 10.16285/j.rsm.2017.2065
|
[10] |
ŠMILAUER V. Yade Documentation[M]. 2nd ed. 2015. The Yade Project. doi: 10.5281/zenodo.34073 (http://yade-dem.org/doc/)
|
[11] |
CUNDALL P A, STRACK O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique, 1980, 30(3): 33-336.
|
[12] |
LANDAUER J, KUHN M, NASATO D S, et al. Particle shape matters - Using 3D printed particles to investigate fundamental particle and packing properties[J]. Powder Technology, 2020, 361: 711-718. doi: 10.1016/j.powtec.2019.11.051
|
[13] |
ELIÁŠ J. Simulation of railway ballast using crushable polyhedral particles[J]. Powder Technology, 2014, 264: 458-465. doi: 10.1016/j.powtec.2014.05.052
|
[14] |
BOON C W, HOULSBY G T, UTILI S. A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method[J]. Computers and Geotechnics, 2012, 44: 73-82. doi: 10.1016/j.compgeo.2012.03.012
|
[15] |
BOYD S, VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004.
|
[16] |
COETZEE C J. Review: Calibration of the discrete element method[J]. Powder Technology, 2017, 310: 104-142. doi: 10.1016/j.powtec.2017.01.015
|
[17] |
ZHAO S W, ZHOU X W, LIU W H. Discrete element simulations of direct shear tests with particle angularity effect[J]. Granular Matter, 2015, 17(6): 793-806. doi: 10.1007/s10035-015-0593-x
|
[18] |
MINDLIN R D. Compliance of elastic bodies in contact[J]. Journal of Applied Mechanics, 1949, 16(3): 259-268. doi: 10.1115/1.4009973
|
[19] |
LI Y J, XU Y, THORNTON C. A comparison of discrete element simulations and experiments for ‘sandpiles’ composed of spherical particles[J]. Powder Technology, 2005, 160(3): 219-228. doi: 10.1016/j.powtec.2005.09.002
|
[20] |
王玉峰, 程谦恭, 朱圻. 汶川地震触发高速远程滑坡-碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012, 31(6): 1089-1106. doi: 10.3969/j.issn.1000-6915.2012.06.002
WANG Yu-feng, CHENG Qian-gong, ZHU Qi. Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1089-1106. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.002
|
[21] |
边学成, 李伟, 李公羽, 等. 基于颗粒真实几何形状的铁路道砟剪切过程三维离散元分析[J]. 工程力学, 2015, 32(5): . https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm
BIAN Xue-cheng, LI Wei, LI Gong-yu, et al. Three-dimensional discrete element analysis of railway ballast's shear process based on particles' real geometry[J]. Engineering Mechanics, 2015, 32(5): . (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505010.htm
|
[22] |
杨舒涵, 周伟, 马刚, 等. 粒间摩擦对岩土颗粒材料三维力学行为的影响机制[J]. 岩土工程学报, 2020, 42(10): 1885-1893. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010018.htm
YANG Shu-han, ZHOU Wei, MA Gang, et al. Mechanism of inter-particle friction effect on 3D mechanical response of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1885-1893. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010018.htm
|
[23] |
ZHAO X L, EVANS T M. Numerical analysis of critical state behaviors of granular soils under different loading conditions[J]. Granular Matter, 2011, 13(6): 751-764. doi: 10.1007/s10035-011-0284-1
|
[24] |
孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008, 57(8): 4667-4674. doi: 10.3321/j.issn:1000-3290.2008.08.007
SUN Qi-cheng, WANG Guang-qian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674. (in Chinese) doi: 10.3321/j.issn:1000-3290.2008.08.007
|
[25] |
戴北冰, 杨峻, 刘锋涛, 等. 散粒土自然堆积的宏细观特征与形成机制[J]. 岩土工程学报, 2019, 41(增刊2): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2016.htm
DAI Bei-bing, YANG Jun, LIU Feng-tao, et al. Macro-and micro-properties and formation mechanisms of granular piles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 57-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2016.htm
|
1. |
李强强,韩赟,史贞,郭永强. 二维周期排桩隔振技术应用于兰州中川国际机场的初探研究. 噪声与振动控制. 2024(02): 249-255 .
![]() | |
2. |
余虔,曹正龙,寇璟媛,高妍婕,马新岩. 不同区域粉土累积塑性应变预测模型. 公路交通科技. 2024(07): 56-64 .
![]() | |
3. |
童俊,刘勤峰,谭聆言,马胜浩,王旭宾,钱建固. 飞机与地铁动载下道基动力响应现场监测及分析. 结构工程师. 2024(05): 122-127 .
![]() | |
4. |
李飞龙,姜昌山,蔡国庆,余虔,韩进宝,张合青. 飞机滑行荷载对水泥混凝土道面及下穿通道的动力响应影响. 土木工程学报. 2024(S2): 80-87 .
![]() | |
5. |
董倩,张献民,包伊婷,程少锋,张宇辉. 飞机-道面耦合作用下飞机随机动荷载研究. 振动与冲击. 2023(05): 287-294+312 .
![]() | |
6. |
雷宇,刘希重,宣明敏,余虔,叶新宇,张升. 基于服役需求的机场粉土道基临界动应力研究. 铁道科学与工程学报. 2023(03): 950-960 .
![]() | |
7. |
罗其奇,张升,李强,叶新宇,张兴胜,余虔. 飞机荷载作用下湿化对粉土道基应力响应的影响. 工程科学与技术. 2023(03): 87-99 .
![]() | |
8. |
易文妮,刘津丞,余虔,宣明敏,刘希重,叶新宇,张升. 循环荷载作用下非饱和盐化粉土动力特性. 哈尔滨工业大学学报. 2023(06): 125-133 .
![]() | |
9. |
黄博,王宇,盛文军,何淳健,凌道盛. 飞机制动滑行作用下跑道的动力响应. 中南大学学报(自然科学版). 2022(08): 3052-3061 .
![]() | |
10. |
冯多,徐林荣,蔡雨,苏娜. 移动荷载作用下横观各向同性层状地基–薄板结构动力响应半解析研究. 岩土工程学报. 2021(05): 858-866 .
![]() | |
11. |
罗其奇,张升,叶新宇,李强,马新岩,张兴中. 飞机荷载作用下湿化粉土道基变形特性研究. 中南大学学报(自然科学版). 2021(07): 2188-2199 .
![]() | |
12. |
魏川尧,黄忠凯,陈颂,杜一鸣. 下穿通道建设对滑行道变形影响的数值模拟. 佳木斯大学学报(自然科学版). 2021(06): 1-5+14 .
![]() | |
13. |
田小芳. 地下结构下穿机场设计中飞机荷载计算研究. 现代隧道技术. 2019(S2): 532-537 .
![]() | |
14. |
蔡学彬. 机场复合道面关键力学响应研究. 建筑技术开发. 2018(06): 1-4 .
![]() | |
15. |
范鹏贤,王贾博,王德荣. 人工填筑岛礁机场的中长期沉降问题. 防护工程. 2018(04): 70-78 .
![]() |