• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Binlong, WANG Dayan, MA Wei, LEI Lele, ZHOU Zhiwei. Characteristics of cumulative plastic strain and critical dynamic stress of frozen clay under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 551-560. DOI: 10.11779/CJGE20211149
Citation: ZHANG Binlong, WANG Dayan, MA Wei, LEI Lele, ZHOU Zhiwei. Characteristics of cumulative plastic strain and critical dynamic stress of frozen clay under principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 551-560. DOI: 10.11779/CJGE20211149

Characteristics of cumulative plastic strain and critical dynamic stress of frozen clay under principal stress rotation

More Information
  • Received Date: September 28, 2021
  • Available Online: March 15, 2023
  • As the foundation of cold region projects and the supporting wall of artificial freezing projects, the frozen soil often bears the disturbance of dynamic loads. Studying the cumulative plastic strain and the critical dynamic stress under the dynamic loads provide an important reference for the deformation design and stability evaluation of the cold region and artificial freezing projects. To reveal the influences of the principal stress rotation on the cumulative plastic strain and the critical dynamic stress characteristics of the frozen clay, a series of dynamic triaxial tests and pure principal stress rotation tests considering the influences of confining pressure are carried out by FHCA-300, and the characteristics of the cumulative plastic strain, the cumulative plastic strain rate and the critical dynamic stress of the frozen clay are analyzed. The results show that the axial cumulative plastic strain of the frozen clay increases with the increase of cycles, the increase of the confining pressure will restrain the development of its axial cumulative plastic strain, and the principal stress rotation will accelerate the development of its axial cumulative plastic strain. The evolution of the axial cumulative plastic strain rate of the frozen clay shows three different trends. The division criterion of plastic deformation behavior of the frozen clay based on the cumulative plastic strain rate is proposed, and the expressions for the critical dynamic stress of the plastic shakedown and plastic creep of the frozen clay are established. It is confirmed that the critical dynamic stress of the frozen clay decreases significantly under the rotation of the principal stress axis. The research results are of important guiding significance for the design, construction and stability evaluation of the frozen soil projects and the development of the resources in cold regions.
  • [1]
    焦贵德, 马巍, 赵淑萍, 等. 高温冻结粉土的累积应变和临界动应力[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3193-3198. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1079.htm

    JIAO Guide, MA Wei, ZHAO Shuping, et al. Accumulated strain and critical dynamic stress of frozen silt at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 3193-3198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S1079.htm
    [2]
    WANG J H, LING X Z, LI Q L, et al. Accumulated permanent strain and critical dynamic stress of frozen silty clay under cyclic loading[J]. Cold Regions Science and Technology, 2018, 153: 130-143. doi: 10.1016/j.coldregions.2018.05.007
    [3]
    XU X T, ZHANG W D, FAN C X, et al. Effect of freeze-thaw cycles on the accumulative deformation of frozen clay under cyclic loading conditions: experimental evidence and theoretical model[J]. Road Materials and Pavement Design, 2021, 22(4): 925-941. doi: 10.1080/14680629.2019.1696221
    [4]
    罗飞, 赵淑萍, 马巍, 等. 循环荷载下冻结兰州黄土变形性质的实验研究[J]. 地下空间与工程学报, 2011, 7(6): 1128-1133. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201106015.htm

    LUO Fei, ZHAO Shuping, MA Wei, et al. Experimental study on deformation behaviors of frozen Lanzhou loess under cyclic loading[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1128-1133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201106015.htm
    [5]
    ZHOU Z W, MA W, LI G Y, et al. A novel evaluation method for accumulative plastic deformation of granular materials subjected to cyclic loading: taking frozen subgrade soil as an example[J]. Cold Regions Science and Technology, 2020, 179: 103152. doi: 10.1016/j.coldregions.2020.103152
    [6]
    刘富强. 冻融循环作用下高含水率黄土动力变形特性研究[D]. 兰州: 兰州大学, 2021.

    LIU Fuqiang. Study on Dynamic Deformation Characteristics of Loess with High Moisture Content under Freeze-Thaw Cycles[D]. Lanzhou: Lanzhou University, 2021. (in Chinese)
    [7]
    ZHANG S, TANG C A, ZHANG X D, et al. Cumulative plastic strain of frozen aeolian soil under highway dynamic loading[J]. Cold Regions Science and Technology, 2015, 120: 89-95. doi: 10.1016/j.coldregions.2015.09.004
    [8]
    ZHANG D, LI Q M, LIU E L, et al. Dynamic properties of frozen silty soils with different coarse-grained contents subjected to cyclic triaxial loading[J]. Cold Regions Science and Technology, 2019, 157: 64-85. doi: 10.1016/j.coldregions.2018.09.010
    [9]
    程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581-1590. doi: 10.11779/CJGE201509004

    CHENG Xiaohui, CHEN Zhihui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581-1590. (in Chinese) doi: 10.11779/CJGE201509004
    [10]
    ISHIHARA K, TOWHATA I. Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations, 1983, 23(4): 11-26. doi: 10.3208/sandf1972.23.4_11
    [11]
    严佳佳, 周建, 龚晓南, 等. 主应力轴纯旋转条件下原状黏土变形特性研究[J]. 岩土工程学报, 2014, 36(3): 474-481. doi: 10.11779/CJGE201403010

    YAN Jiajia, ZHOU Jian, GONG Xiaonan, et al. Deformation behavior of intact clay under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474-481. (in Chinese) doi: 10.11779/CJGE201403010
    [12]
    SYMES M J P R, GENS A, HIGHT D W. Undrained anisotropy and principal stress rotation in saturated sand[J]. Géotechnique, 1984, 34(1): 11-27. doi: 10.1680/geot.1984.34.1.11
    [13]
    WANG Y K, GAO Y F, GUO L, et al. Cyclic response of natural soft marine clay under principal stress rotation as induced by wave loads[J]. Ocean Engineering, 2017, 129: 191-202. doi: 10.1016/j.oceaneng.2016.11.031
    [14]
    沈扬, 陶明安, 王鑫, 等. 交通荷载引发主应力轴旋转下软黏土变形与强度特性试验研究[J]. 岩土力学, 2016, 37(6): 1569-1578. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606006.htm

    SHEN Yang, TAO Mingan, WANG Xin, et al. An experimental study of the deformation and strength characteristics of soft clay under principal stress axis rotation caused by traffic load[J]. Rock and Soil Mechanics, 2016, 37(6): 1569-1578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606006.htm
    [15]
    钱建固, 王永刚, 张甲峰, 等. 交通动载下饱和软黏土累计变形的不排水循环扭剪试验[J]. 岩土工程学报, 2013, 35(10): 1790-1798. http://cge.nhri.cn/cn/article/id/15297

    QIAN Jiangu, WANG Yonggang, ZHANG Jiafeng, et al. Undrained cyclic torsion shear tests on permanent deformation responses of soft saturated clay to traffic loadings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1790-1798. (in Chinese) http://cge.nhri.cn/cn/article/id/15297
    [16]
    郭莹, 栾茂田, 何杨, 等. 主应力方向循环变化对饱和松砂不排水动力特性的影响[J]. 岩土工程学报, 2005, 27(4): 403-409. http://cge.nhri.cn/cn/article/id/11642

    GUO Ying, LUAN Maotian, HE Yang, et al. Effect of variation of principal stress orientation during cyclic loading on undrained dynamic behavior of saturated loose sands[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 403-409. (in Chinese) http://cge.nhri.cn/cn/article/id/11642
    [17]
    翁效林, 李豪, 尚许雯, 等. 循环荷载下重塑黄土变形特性[J]. 交通运输工程学报, 2019, 19(3): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201903002.htm

    WENG Xiaolin, LI Hao, SHANG Xuwen, et al. Deformation properties of remolded loess under cyclic loading[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 10-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201903002.htm
    [18]
    伍婷玉, 郭林, 蔡袁强, 等. 交通荷载应力路径下K0固结软黏土变形特性试验研究[J]. 岩土工程学报, 2017, 39(5): 859-867. doi: 10.11779/CJGE201705010

    WU Tingyu, GUO Lin, CAI Yuanqiang, et al. Deformation behavior of K0-consolidated soft clay under traffic load-induced stress paths[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 859-867. (in Chinese) doi: 10.11779/CJGE201705010
    [19]
    郭妍, 王大雁, 马巍, 等. 冻土空心圆柱仪的研发与应用[J]. 哈尔滨工业大学学报, 2016, 48(12): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201612018.htm

    GUO Yan, WANG Dayan, MA Wei, et al. Development and application of frozen hollow cylinder apparatus[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 114-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201612018.htm
    [20]
    雷乐乐, 王大雁, 王永涛, 等. 定向剪切应力路径下冻结黏土强度特性试验[J]. 哈尔滨工业大学学报, 2018, 50(6): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806015.htm

    LEI Lele, WANG Dayan, WANG Yongtao, et al. The strength characteristics of frozen clay under the different principal stress directions[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 103-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806015.htm
    [21]
    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22]
    王康宇, 庄妍, 耿雪玉. 铁路路基粗粒土填料临界动应力试验研究[J]. 岩土力学, 2020, 41(6): 1865-1873. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006010.htm

    WANG Kangyu, ZHUANG Yan, GENG Xueyu. Experimental study on critical dynamic stress of coarse-grained soil filler in railway subgrade[J]. Rock and Soil Mechanics, 2020, 41(6): 1865-1873. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202006010.htm
    [23]
    周健, 简琦薇, 张姣, 等. 循环荷载下铁精矿动力特性试验研究[J]. 岩土工程学报, 2013, 35(12): 2346-2352. http://cge.nhri.cn/cn/article/id/15618

    ZHOU Jian, JIAN Qiwei, ZHANG Jiao, et al. Dynamic behaviors of iron ore concentrate under cyclic loading by hollow cylinder apparatus[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2346-2352. (in Chinese) http://cge.nhri.cn/cn/article/id/15618
    [24]
    吴志坚, 马巍, 王兰民, 等. 地震荷载作用下温度和围压对冻土强度影响的试验研究[J]. 冰川冻土, 2003, 25(6): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200306009.htm

    WU Zhijian, MA Wei, WANG Lanmin, et al. Laboratory study on the effect of temperature and confining pressureon strength of frozen soil under seismic dynamic loading[J]. Journal of Glaciology and Geocryology, 2003, 25(6): 648-652. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200306009.htm
    [25]
    王钰轲, 黎冰. 扭剪作用下饱和软黏土轴向纯压循环变形及模量软化特性试验研究[J]. 东南大学学报(自然科学版), 2019, 49(5): 981-988. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201905023.htm

    WANG Yuke, LI Bing. Experimental study on one-way cyclic deformation and softening behavior of saturated soft clay under principal stress rotation[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(5): 981-988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201905023.htm
    [26]
    庄心善, 赵汉文, 陶高梁, 等. 循环荷载下弱膨胀土累积变形与动强度特性试验研究[J]. 岩土力学, 2020, 41(10): 3192-3200. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010004.htm

    ZHUANG Xinshan, ZHAO Hanwen, TAO Gaoliang, et al. Accumulated deformation and dynamic strength properties of weak expansive soil under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(10): 3192-3200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010004.htm
    [27]
    王丹. 冻土冻结缘室内试验及机理研究[D]. 北京: 中国科学院大学, 2019.

    WANG Dan. Laboratory Test and Mechanism Study of Frozen Soil Edge[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
    [28]
    WERKMEISTER S. Permanent Deformation Behavior of Unbound Granular Materials in Pavement Constructions[D]. Dresden: Dresden University of Technology, 2003.
    [29]
    聂如松, 李亚峰, 冷伍明, 等. 列车间歇荷载作用下路基细粒土填料的塑性变形行为及临界动应力研究[J]. 岩石力学与工程学报, 2021, 40(4): 828-841. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104016.htm

    NIE Rusong, LI Yafeng, LENG Wuming, et al. Plastic deformation and critical dynamic stress of fine-grained soils under intermittent loading of trains[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 828-841. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104016.htm
    [30]
    冷伍明, 刘文劼, 周文权. 振动荷载作用下重载铁路路基粗颗粒土填料临界动应力试验研究[J]. 振动与冲击, 2015, 34(16): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201516005.htm

    LENG Wuming, LIU Wenjie, ZHOU Wenquan. Testing research on critical cyclical stress of coarse-grained soil filling in heavy haul railway subgrade[J]. Journal of Vibration and Shock, 2015, 34(16): 25-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201516005.htm
    [31]
    杨志浩, 岳祖润, 冯怀平, 等. 级配碎石填料大三轴试验及累积塑性应变预测模型[J]. 岩土力学, 2020, 41(9): 2993-3002. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm

    YANG Zhihao, YUE Zurun, FENG Huaiping, et al. Large scale triaxial tests on graded macadam filling and its accumulated plastic strain prediction model[J]. Rock and Soil Mechanics, 2020, 41(9): 2993-3002. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009016.htm
  • Cited by

    Periodical cited type(4)

    1. 秦悠,杜歆宇,马维嘉,吴琪,陈国兴. 不同初始剪应力下饱和珊瑚砂的液化特性. 哈尔滨工程大学学报. 2025(02): 197-204+209 .
    2. 魏怡童,杨洋. 基于剪切波速的地震液化概率性评估方法综述. 世界地震工程. 2025(02): 160-172 .
    3. Chen Guoxing,Qin You,Ma Weijia,Liang Ke,Wu Qi,C.Hsein Juang. Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings——a critical review. Earthquake Engineering and Engineering Vibration. 2024(01): 261-296 .
    4. 周正龙,华凌霄,徐令宇,赵凯,吴琪,陈国兴. 初始剪应力作用下饱和粉土液化流动特性试验研究. 岩土力学. 2024(11): 3295-3303 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return