Citation: | ZHANG Sheng, LAN Peng, SU Jingjing, XIONG Haibin. Simulation and parameter identification of groundwater flow model basedon PINNs algorithms[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 376-383. DOI: 10.11779/CJGE20211138 |
[1] |
谢一凡, 吴吉春, 王益, 等. 一种模拟节点达西流速的多尺度有限元-有限元模型[J]. 岩土工程学报, 2022, 44(1): 107-114, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201010.htm
XIE Yifan, WU Jichun, WANG Yi, et al. Multiscale finite element-finite element model for simulating nodal Darcy velocity[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 107-114, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202201010.htm
|
[2] |
谢一凡, 吴吉春, 薛禹群, 等. 一种模拟节点达西渗透流速的三次样条多尺度有限单元法[J]. 岩土工程学报, 2015, 37(9): 1727-1732. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509030.htm
XIE Yifan, WU Jichun, XUE Yuqun, et al. Cubic-spline multiscale finite element method for simulation of nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1727-1732. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509030.htm
|
[3] |
李守巨, 上官子昌, 刘迎曦, 等. 地下水渗流模型参数识别的模拟退火算法[J]. 岩石力学与工程学报, 2005(S1): 5031-5036. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508002002.htm
LI Shouju, SHANGGUAN Zichang, LIU Yingxi, et al. Parameter identification procedure for groundwater flow model with simulated annealing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(S1): 5031-5036. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508002002.htm
|
[4] |
周凌峰, 王媛, 冯迪. 求解非均质渗流场的改进数值流形方法[J]. 岩土工程学报, 2021, 43(7): 1288-1296, 1377. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107018.htm
ZHOU Lingfeng, WANG Yuan, FENG Di. An improved numerical manifold method for solving heterogeneous seepage problem[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1288-1296, 1377. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202107018.htm
|
[5] |
YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534. doi: 10.1029/WR017i005p01529
|
[6] |
D'ANGELO C, SCOTTI A. A mixed finite element method for Darcy flow in fractured porous media with non-matching grids[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2012, 46(2): 465-489. doi: 10.1051/m2an/2011148
|
[7] |
赵文凤, 谢一凡, 吴吉春. 一种模拟节点达西渗透流速的双重网格多尺度有限单元法[J]. 岩土工程学报, 2020, 42(8): 1474-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm
ZHAO Wenfeng, XIE Yifan, WU Jichun. A dual-mesh multiscale finite element method for simulating nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1474-1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm
|
[8] |
WILLIS R, YEH W W G. Groundwater systems planning and management[M]. Englewood Cliffs, NJ: Prentice-Hall, 1987
|
[9] |
姚磊华. 遗传算法和高斯牛顿法联合反演地下水渗流模型参数[J]. 岩土工程学报, 2005, 27(8): 885-890. doi: 10.3321/j.issn:1000-4548.2005.08.007
YAO Leihua. Parameters identification of groundwater flow model with genetic algorithm and Gauss-Newton Method[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 885-890. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.08.007
|
[10] |
PINKUS A. Approximation theory of the MLP model in neural networks[J]. Acta Numerica, 1999, 8: 143-195. doi: 10.1017/S0962492900002919
|
[11] |
GUNES B A, PEARLMUTTER BARAK A, ANDREYEVICH R A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2018, 18(1): 5595-5637.
|
[12] |
HAGHIGHAT E, RAISSI M, MOURE A, et al. A deep learning framework for solution and discovery in solid mechanics[EB/OL]. 2020: arXiv: 2003.02751. https://arxiv.org/abs/2003.02751
|
[13] |
唐明健, 唐和生. 基于物理信息的深度学习求解矩形薄板力学正反问题[J]. 计算力学学报, 2022, 39(1): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202201018.htm
TANG Mingjian, TANG Hesheng. A physics-informed deep learning method for solving forward and inverse mechanics problems of thin rectangular plates[J]. Chinese Journal of Computational Mechanics, 2022, 39(1): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202201018.htm
|
[14] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707.
|
[15] |
CHEN Z, LIU Y, SUN H. Physics-informed learning of governing equations from scarce data[J]. Nature Communications, 2021, 12: 6136.
|
[16] |
ZHANG Q, CHEN Y L, YANG Z Y, et al. Multi-constitutive neural network for large deformation poromechanics problem[EB/OL]. 2020: arXiv: 2010.15549. https://arxiv.org/abs/2010.15549
|
[17] |
BEKELE Y W. Physics-informed deep learning for flow and deformation in poroelastic media[EB/OL]. 2020: arXiv: 2010.15426. https://arxiv.org/abs/2010.15426
|
[18] |
兰鹏, 李海潮, 叶新宇, 等. PINNs算法及其在岩土工程中的应用研究[J]. 岩土工程学报, 2021, 43(3): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103028.htm
LAN Peng, LI Haichao, YE Xinyu, et al. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103028.htm
|
[19] |
HE Q Z, BARAJAS-SOLANO D, TARTAKOVSKY G, et al. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport[J]. Advances in Water Resources, 2020, 141: 103610.
|
[20] |
TARTAKOVSKY A M, MARRERO C O, PERDIKARIS P, et al. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems[J]. Water Resources Research, 2020, 56(5): e2019WR026731.
|
[21] |
BANDAI T, GHEZZEHEI T A. Physics-informed neural networks with monotonicity constraints for Richardson- richards equation: estimation of constitutive relationships and soil water flux density from volumetric water content measurements[J]. Water Resources Research, 2021, 57(2): e2020WR027642.
|
[22] |
BANDAI T, GHEZZEHEI T A. Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition[J]. Hydrology and Earth System Sciences, 2022, 26(16): 4469-4495.
|
[23] |
LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228.
|
[24] |
SUN L N, GAO H, PAN S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732.
|
[25] |
LAGARI P L, TSOUKALAS L H, SAFARKHANI S, et al. Systematic construction of neural forms for solving partial differential equations inside rectangular domains, subject to initial, boundary and interface conditions[J]. International Journal on Artificial Intelligence Tools, 2020, 29(5): 2050009.
|
[26] |
LU L, PESTOURIE R, YAO W J, et al. Physics-informed neural networks with hard constraints for inverse design[J]. SIAM Journal on Scientific Computing, 2021, 43(6): B1105-B1132.
|
[27] |
陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202103031.htm
LU Zhibin, QU Jinghui, LIU Hua, et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 2021, 72(3): 1496-1503. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202103031.htm
|
[28] |
ABADI M, BARHAM P, CHEN J M, et al. TensorFlow: a system for large-scale machine learning[C]//Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation. November 2 - 4, 2016, Savannah, GA, USA. New York: ACM, 2016: 265-283.
|
[29] |
ADAM P, GROSS S, CHINTALA S, et al. Automatic differentiation in PyTorch[C]// 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017, Long Beach.
|
[30] |
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61.
|
[31] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[C]// 3rd International Conference on Learning Representations, 2015, San Diego.
|
[32] |
ZHU C, BYRD R H, LU P, et al. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transactions on Mathematical Software, 1997, 23(4): 550–560.
|