• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yin, TAO Yi-chen, CHENG Kuang, YANG Qing. Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2084-2093. DOI: 10.11779/CJGE202111015
Citation: WANG Yin, TAO Yi-chen, CHENG Kuang, YANG Qing. Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2084-2093. DOI: 10.11779/CJGE202111015

Arbitrary resolved-unresolved CFD-DEM coupling method and its application to seepage flow analysis in sandy soil

More Information
  • Received Date: December 24, 2020
  • Available Online: December 01, 2022
  • The Euler-Lagrange coupling scheme based on the continuous and discrete theories has been becoming increasingly popular in numerical analysis of fluid-particle interaction. In this study, by introducing the modified Gaussian weighting function, a new arbitrary resolved-unresolved CFD-DEM coupling method (ARU CFD-DEM) is proposed based on the authors’ previous developed semi-resolved coupling approach by combing the fully-resolved and un-resolved coupling methods. This ARU CFD-DEM method is powerful to relieve the overload in computation due to refining the flow field around the coarse particles in the fully-resolving method. At the same time, it is also able to solve the difficulty in computing the local averaging variables when fine particles with large diameter exist in fluid grids. By doing so, the ARU CFD-DEM is able to simulate the fluid-particle interaction in sand mass which contains a wide range of particle diameters. By comparing with the results of upward seepage flow tests in sand, the accuracy and effectiveness of ARU CFD-DEM model is verified. Furthermore, the hydraulic gradient-flow velocity relationship and soil deformation-flow velocity relationship in the upward seepage flow are analyzed on the particle-scale by the ARU CFD-DEM. The proposed ARU CFD-DEM model can provide a new tool for investigating the fluid-particle interaction in the seepage flow in geotechnical engineering.
  • [1]
    周健, 姚志雄, 张刚. 砂土渗流过程的细观数值模拟[J]. 岩土工程学报, 2007, 29(7): 977-981. doi: 10.3321/j.issn:1000-4548.2007.07.004

    ZHOU Jian, YAO Zhi-xiong, ZHANG Gang. Mesomechanical simulation of seepage flow in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 977-981. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.004
    [2]
    EL SHAMY U, ZEGHAL M, DOBRY R, et al. Micromechanical aspects of liquefaction-induced lateral spreading[J]. International Journal of Geomechanics, 2010, 10(5): 190-201. doi: 10.1061/(ASCE)GM.1943-5622.0000056
    [3]
    ZHAO J D, SHAN T. Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J]. Powder Technology, 2013, 239: 248-258. doi: 10.1016/j.powtec.2013.02.003
    [4]
    蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5): 793-801. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm

    JIANG Ming-jing, ZHANG Wang-cheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 793-801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405002.htm
    [5]
    王胤, 艾军, 杨庆. 考虑粒间滚动阻力的CFD-DEM流-固耦合数值模拟方法[J]. 岩土力学, 2017, 38(6): 1771-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm

    WANG Yin, AI Jun, YANG Qing. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance[J]. Rock and Soil Mechanics, 2017, 38(6): 1771-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm
    [6]
    HAGER A, KLOSS C, PIRKER S, et al. Parallel resolved open source CFD-DEM: method, validation and application[J]. The Journal of Computational Multiphase Flows, 2014, 6(1): 13-27. doi: 10.1260/1757-482X.6.1.13
    [7]
    WANG Z L, FAN J R, LUO K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles[J]. International Journal of Multiphase Flow, 2008, 34(3): 283-302. doi: 10.1016/j.ijmultiphaseflow.2007.10.004
    [8]
    ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.
    [9]
    TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. doi: 10.1016/0032-5910(93)85010-7
    [10]
    CHENG K, WANG Y, YANG Q. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils[J]. Computers and Geotechnics, 2018, 100: 30-51. doi: 10.1016/j.compgeo.2018.04.004
    [11]
    DI RENZO A, DI MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. doi: 10.1016/j.ces.2003.09.037
    [12]
    DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. doi: 10.1016/0301-9322(94)90011-6
    [13]
    WANG Y, ZHOU L X, WU Y, et al. New simple correlation formula for the drag coefficient of calcareous sand particles of highly irregular shape[J]. Powder Technology, 2018, 326: 379-392. doi: 10.1016/j.powtec.2017.12.004
    [14]
    王胤, 周令新, 杨庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905046.htm

    WANG Yin, ZHOU Ling-xin, YANG Qing. New drag coefficient model for irregular calcareous sand particles and its application into fluid-particle coupling simulation[J]. Rock and Soil Mechanics, 2019, 40(5): 2009-2015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905046.htm
    [15]
    YANG Q, CHENG K, WANG Y, et al. Improvement of semi-resolved CFD-DEM model for seepage-induced fine-particle migration: Eliminate limitation on mesh refinement[J]. Computers and Geotechnics, 2019, 110: 1-18. doi: 10.1016/j.compgeo.2019.02.002
    [16]
    JASAK H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows[D]. London: Imperial College, University of London, 1996.
    [17]
    ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65. doi: 10.1016/0021-9991(86)90099-9
    [18]
    SHIRGAONKAR A A, MACIVER M A, PATANKAR N A. A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion[J]. Journal of Computational Physics, 2009, 228(7): 2366-2390.
    [19]
    KLOSS C, GONIVA C. LIGGGHTS - open source discrete element simulations of granular materials based on lammps[M]//Supplemental Proceedings. Hoboken: John Wiley & Sons, Inc., 2011: 781-788.
    [20]
    WELLER H. OpenFOAM: The open source CFD toolbox, Programmer’s Guide[EB/OL]. UK: CFD Direct Ltd, 2009, Http://www.openfoam.com.
  • Cited by

    Periodical cited type(2)

    1. 陶志刚,丰于翔,赵易,张晓宇,何满潮,雷啸天. 穿断层隧道NPR锚索支护体系抗震特性振动台试验研究. 岩土力学. 2024(04): 939-949 .
    2. 陈文芳. 锚索支护下库岸边坡稳定性影响因素分析. 水利科技与经济. 2024(05): 68-70+94 .

    Other cited types(3)

Catalog

    Article views (361) PDF downloads (348) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return