• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, LUO Chi-yu. Simplified calculation and design method of multi-well system for anti-uplifting based on intercepting and discharging water[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1986-1993. DOI: 10.11779/CJGE202111004
Citation: ZHU Dong-feng, CAO Hong, LUO Guan-yong, PAN Hong, LUO Chi-yu. Simplified calculation and design method of multi-well system for anti-uplifting based on intercepting and discharging water[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1986-1993. DOI: 10.11779/CJGE202111004

Simplified calculation and design method of multi-well system for anti-uplifting based on intercepting and discharging water

More Information
  • Received Date: January 03, 2021
  • Available Online: December 01, 2022
  • For the multi-well system in the anti-uplifting system based on intercepting and discharging water, there is no practical simplified method except the numerical method for seepage analysis, which is not conducive to its application. In view of this, a simplified method is proposed. The idea is as follows: for the multi-well system with even distribution inside the circular cut-off wall, the hydraulic head on the inside boundary of the cut-off wall is assumed to be constant, and the distribution of the hydraulic head of the multi-well system is deduced through conformal mapping. For the non-circular cut-off wall, it can be equivalent to a circle to obtain an approximate solution.The resistance coefficient method is adopted to connect the inner and outer seepage fields of the cut-off wall in series on the basis of considering the water leakage and by-pass seepage of the cut-off wall, and the total flow can be obtained. After verification, a comparison with the finite element method shows that the difference between the simplified algorithm and the finite element method is smaller, and it only needs to provide a few geometric parameters to get more accurate results. The control of the hydraulic head at the bottom of the floor and the hydraulic slope around the well are the key points in the anti-uplifting design process based on drainage decompression. Moreover, in order to give consideration of both safety and economy, parameters n, r, hw and rw need to be adjusted repeatedly to achieve the best effect.
  • [1]
    朱东风, 曹洪, 骆冠勇, 等. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报, 2018, 40(9): 1746-1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809026.htm

    ZHU Dong-feng, CAO Hong, LUO Guan-yong, et al. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1746-1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809026.htm
    [2]
    曹洪, 潘泓, 骆冠勇. 地下结构截排减压抗浮概念及应用[J]. 岩石力学与工程学报, 2016, 35(12): 2542-2548. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612019.htm

    CAO Hong, PAN Hong, LUO Guan-yong. A new anti-floatation method by drainage: concept and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2542-2548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612019.htm
    [3]
    安徽省水利科学研究所. 多层地基和减压沟井的渗流计算理论[M]. 北京: 水利出版社, 1980.

    Anhui Water Resources Research Institute. Theory of Seepage Flow for Calculating Layered Media and Relief Ditches and Relief Wells[M]. Beijing: Water Resources Press, 1980. (in Chinese)
    [4]
    毛昶熙. 渗流计算分析与控制[M]. 2版. 北京: 中国水利水电出版社, 2003.

    MAO Chang-xi. Seepage Computation Analysis & Control[M]. 2nd ed. Beijing: China Water Power Press, 2003. (in Chinese)
    [5]
    U.S. Army Corps of Engineers. Design, Construction, and Maintenance of Relief Wells (Engineer Manual No. 1110-1914)[M]. Washington D.C.: Department of the Army, 1992.
    [6]
    吴林高. 工程降水设计施工与基坑渗流理论[M]. 北京: 人民交通出版社, 2003.

    WU Lin-gao. Design and Execution of Dewatering & Theory of Seepage in Deep Excavation[M]. Beijing: China Communications Press, 2003. (in Chinese)
    [7]
    曹洪, 朱东风, 范泽, 等. 止水帷幕缝隙渗漏变化过程试验研究[J]. 水利学报, 2019, 50(6): 699-709. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906005.htm

    CAO Hong, ZHU Dong-feng, FAN Ze, et al. Laboratory study of leakage process for cut-off wall with crack[J]. Journal of Hydraulic Engineering, 2019, 50(6): 699-709. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906005.htm
    [8]
    王仁东. 略去流床板桩厚度对滤流(渗流)计算的影响[J]. 浙江大学学报, 1957(3): 9-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC195703001.htm

    WANG Ren-dong. The influence on seepage calculation without considering sheet pile thickness[J]. Journal of Zhejiang University, 1957(3): 9-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC195703001.htm
    [9]
    胡瑶. 考虑基坑防渗结构的井的计算方法研究[D]. 广州: 华南理工大学, 2018.

    HU Yao. Study on Calculation Method of Well Considering Impervious Structure of Foundation Pit[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [10]
    钟玉泉. 复变函数论[M]. 3版. 北京: 高等教育出版社, 2004.

    ZHONG Yu-quan. Complex Function Theory[M]. 3rd ed. Beijing: China Higher Education Press, 2004. (in Chinese)
    [11]
    朱东风. 地下结构截排减压抗浮法渗控关键问题研究[D]. 广州: 华南理工大学, 2019.

    ZHU Dong-feng. A Study on Seepage Control Issues of Anti-uplift Method for Underground Structures Based on Intercepting and Discharging Water[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [12]
    阿拉文, 努麦诺夫. 滤流理论[M]. 王仁东译.北京: 高等教育出版社.1959.

    Аравин , Нуменов . Percolation Theory[M]. WANG Ren-dong trans. Beijing: Higher Education Press.1959. (in Chinese)
    [13]
    ZHU D F, CAO H, PAN H, et al. Laboratory study of retention and clogging performance of no-fines concretes[J]. European Journal of Environmental and Civil Engineering, 2021, 25(8): 1471-1490. doi: 10.1080/19648189.2019.1581664
    [14]
    刘杰. 土的渗透破坏及控制研究[M]. 北京: 中国水利水电出版社, 2014.

    LIU Jie. Piping and seepage control of soil[M]. Beijing: China Water Power Press, 2014. (in Chinese)
  • Cited by

    Periodical cited type(15)

    1. 牛广利,李天旸,薛广文,崔朋,秦朋,方豪文. 长距离引调水工程智能安全监控预警系统研发及应用. 长江科学院院报. 2025(02): 204-210 .
    2. 张中昊,李赛,汪可欣. 蠕滑-地震动联合作用下跨断层输水隧洞衬砌结构损伤分析. 振动与冲击. 2025(04): 275-285 .
    3. 司才龙,贾治元,贡力. 冰-水耦合作用下流冰对闸墩的撞击破坏力学特性响应. 科学技术与工程. 2025(07): 2943-2950 .
    4. 李艳丽,章志明,桂单明. 基于组合赋权-云模型的城市配水工程质量评价研究. 中国农村水利水电. 2025(03): 14-22 .
    5. 邓子昂,张继勋,张玉贤,孙艳鹏. 代理模型驱动的隧洞支护方案多目标优化方法. 水力发电学报. 2025(04): 59-71 .
    6. 张书豪,艾亚鹏,陈健,靳春玲,姬照泰. 物元可拓法在引水隧洞围岩稳定性评价中的应用. 安全与环境学报. 2024(01): 10-18 .
    7. 方腾卫,杨孟,张建伟,陈磊,曹克磊. TBM引水隧洞组合结构联合承载特性及荷载分担率研究. 广东水利水电. 2024(01): 31-38 .
    8. 徐文韬,徐红超,石长征,伍鹤皋,张超,李端正. 有压引水隧洞多层柔性叠合衬砌对断层蠕滑错动的适应性研究. 岩土工程学报. 2024(05): 998-1007 . 本站查看
    9. 夏求林,吕兴栋,李平刚,周世华,高志扬. PVA纤维、减缩剂和轻烧氧化镁对水工衬砌混凝土性能影响对比研究. 水利水电技术(中英文). 2024(S1): 429-433 .
    10. 黄邦辉,李志荣,左澍琼,邓开来,辜文兰,洪彧. 导水屏障调谐减震渡槽振动台试验. 清华大学学报(自然科学版). 2024(07): 1147-1156 .
    11. 胡江,叶伟,马福恒. 长距离调水工程安全风险综合评估. 南水北调与水利科技(中英文). 2024(03): 417-426 .
    12. 郑书闽,颜建国,郭鹏程,徐燕,李江,刘振兴. 基于VMD及深度学习的供水管道小尺度泄漏检测研究. 水利学报. 2024(08): 999-1008 .
    13. 李颂章,李星霖,韦凡秋,罗亮明,夏裕栋. 基于数字图像修正HC法的水工隧洞围岩精细化分级研究. 中国农村水利水电. 2024(11): 227-232+246 .
    14. 张剑,邹德兵,傅兴安,鲁伟. 超大城市水网深隧绿色建造与智慧工程设计. 水利水电技术(中英文). 2024(S2): 250-254 .
    15. 包娟,钱波,段正刚,庄锦亮. 长距离输水管道水头损失计算可视化程序设计与应用. 云南水力发电. 2023(07): 124-127 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return