• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HE Xiang, LIU Han-long, HAN Fei, MA Guo-liang, ZHAO Chang, CHU Jian, XIAO Yang. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. DOI: 10.11779/CJGE202110012
Citation: HE Xiang, LIU Han-long, HAN Fei, MA Guo-liang, ZHAO Chang, CHU Jian, XIAO Yang. Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1861-1869. DOI: 10.11779/CJGE202110012

Spatiotemporal evolution of microbial-induced calcium carbonate precipitation based on microfluidics

More Information
  • Received Date: December 24, 2020
  • Available Online: December 02, 2022
  • The microbial-induced calcium carbonate precipitation (MICP) is a hot research topic in recent years, however, the understanding of its spatiotemporal evolution is still insufficient. This paper aims to investigate the spatiotemporal evolution process by designing a conceptual microfluidic chip within large and small pores and using a visualized experimental platform. An image-processing method is proposed to distinguish the calcium carbonate and measure its areas during the precipitation process, which allows the quantitative study on the spatiotemporal evolution process of MICP. The results show that the pore structures are involved in regulation of crystallization of the calcium carbonate. The calcium carbonate in the large pores of the channel exhibit as a single crystal, while those in the small pores between the sand particles show asymptotic growth in the form of aggregates and exhibit three different growth processes. Regardless of single crystal or crystalline aggregates, the growth rate of the calcium carbonate first increases and then gradually decreases with the increasing reaction time. The maximum growth rate is 4.22 μm/min with respect of the equivalent radius of the calcium carbonate crystals. This study is expected to benchmark the pore-scale modeling of biomineralization and provide reference for field practices.
  • [1]
    SIGEL A, SIGEL H, SIGEL RKO. Biomineralization: From Nature to Application[M]. Chichester: John Wiley & Sons Ltd, 2008.
    [2]
    TANG C-S, YIN L-Y, JIANG N-J, et al. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review[J]. Environmental Earth Sciences, 2020, 79(5): 24.
    [3]
    JROUNDI F, SCHIRO M, RUIZ-AGUDO E, et al. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities[J]. Nature Communications, 2017, 8(1): 279. doi: 10.1038/s41467-017-00372-3
    [4]
    QIAN C X, REN L F, XUE B, et al. Bio-mineralization on cement-based materials consuming CO2 from atmosphere[J]. Construction and Building Materials, 2016, 106: 126-132. doi: 10.1016/j.conbuildmat.2015.10.105
    [5]
    谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675-682. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang, et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)- treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675-682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904014.htm
    [6]
    方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm

    FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
    [7]
    ACHAL V, PAN X, LEE D J, et al. Remediation of Cr(VI) from chromium slag by biocementation[J]. Chemosphere, 2013, 93(7): 1352-1358. doi: 10.1016/j.chemosphere.2013.08.008
    [8]
    LI M, CHENG X, GUO H, et al. Biomineralization of carbonate by terrabacter tumescens for heavy metal removal and biogrouting applications[J]. Journal of Environmental Engineering, 2016, 142(9): C4015005. doi: 10.1061/(ASCE)EE.1943-7870.0000970
    [9]
    ZHANG W, JU Y, ZONG Y, et al. In situ real-time study on dynamics of microbially induced calcium carbonate precipitation at a single-cell level[J]. Environmental Science & Technology, 2018, 52(16): 9266-9276.
    [10]
    HARRIS D, UMMADI J G, THURBER A R, et al. Real-time monitoring of calcification process by Sporosarcina pasteurii biofilm[J]. The Analyst, 2016, 141(10): 2887-2895. doi: 10.1039/C6AN00007J
    [11]
    ZAMBARE N, LAUCHNOR E G, GERLACH R. Controlling the distribution of microbially precipitated calcium carbonate in radial flow environments[J]. Environmental Science & Technology, 2019, 53(10): 5916-5925.
    [12]
    WANG Y, SOGA K, DEJONG J T, et al. Microscale visualization of microbial-induced calcium carbonate precipitation processes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019045. doi: 10.1061/(ASCE)GT.1943-5606.0002079
    [13]
    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
    [14]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    [15]
    CHU J, IVANOV V, STABNIKOV V, et al. Microbial method for construction of an aquaculture pond in sand[J]. Géotechnique, 2013, 63(10): 871-875. doi: 10.1680/geot.SIP13.P.007
    [16]
    李贤, 汪时机, 何丙辉, 等. 土体适用micp技术的渗透特性条件研究[J]. 岩土力学, 2019, 40(8): 2956-2964, 2974. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm

    LI Xian, WANG Shi-ji, HE Bing-hui, et al. Permeability condition of soil suitable for MICP method[J]. Rock and Soil Mechanics, 2020, 40(8): 2956-2964, 2974. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908010.htm
    [17]
    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
    [18]
    李驰, 王硕, 王燕星, 等. 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm

    LI Chi, WANG Shuo, WANG Yan-xing, et al. Field experimental study on stability of bio-mineralization crust in the desert[J]. Rock and Soil Mechanics, 2019, 40(4): 1291-1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201904007.htm
    [19]
    谈叶飞, 郭张军, 陈鸿杰, 等. 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报(自然科学版), 2018, 46(6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806009.htm

    TAN Ye-fei, GUO Zhang-jun, CHEN Hong-jie, et al. Study on application of microbial tracing consolidation technology in the seepage prevention of earth bank[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6): 521-526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201806009.htm
    [20]
    刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm

    LIU Han-long, MA Guo-liang, XIAO Yang, et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Chinese Ground Improvement, 2019, 1(1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
    [21]
    彭劼, 温智力, 刘志明, 等. 微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J]. 岩土工程学报, 2019, 41(4): 733-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm

    PENG Jie, WEN Zhi-li, LIU Zhi-ming, et al. Experimental research on MICP-treated organic clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 733-740. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904022.htm
    [22]
    欧孝夺, 莫鹏, 江杰, 等. 生石灰与微生物共同固化过湿性铝尾黏土试验研究[J]. 岩土工程学报, 2020, 42(4): 624-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm

    OU Xiao-duo, MO Peng, JIANG jie, et al. Experimental study on solidification of bauxite tailing clay with quicklime and microorganism[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 624-631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004007.htm
    [23]
    桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269-278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm

    GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269-278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002011.htm
    [24]
    黄涛, 方祥位, 张伟, 等. 活性氧化镁-微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306, 3316. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010015.htm

    HUANG Tao, FANG Xiang-wei, ZHANG Wei, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2020, 41(10): 3300-3306, 3316. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010015.htm
    [25]
    马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2020, 43(2): 290-299. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102011.htm

    MA Guo-liang, HE Xiang, LU Hua-ming, et al. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2020, 43(2): 290-299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102011.htm
    [26]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801003.htm
    [27]
    吴敏, 高玉峰, 何稼, 等. 大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J]. 岩土工程学报, 2020, 42(10): 1914-1921. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010023.htm

    WU Min, GAO Yu-feng, HE Jia, et al. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010023.htm
    [28]
    刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm

    LIU Lu, SHEN Yang, LIU Han-long, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 12(12): 3410-3416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm
    [29]
    XIAO Y, STUEDLEIN A W, RAN J Y, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016.
    [30]
    XIAO Y, STUEDLEIN AW, PAN Z, et al. Toe bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geo- environmental Engineering, 2020, 146(12): 06020026.
    [31]
    XIAO P, LIU H L, STUEDLEIN A W, et al. Effect of relative density and biocementation on cyclic response of calcareous sand[J]. Canadian Geotechnical Journal, 2019, 56(12): 1849-1862.
    [32]
    XIAO Y, ZHAO C, SUN Y, et al. Compression behavior of MICP-treated sand with various gradations[J]. Acta Geotechnica, 2021, 16(5): 1391-1400.
    [33]
    MARZIN T, DESVAGES B, CREPPY A, et al. Using microfluidic set-up to determine the adsorption rate of sporosarcina pasteurii bacteria on sandstone[J]. Transport in Porous Media, 2020, 132(2): 283-297.
    [34]
    SCHUSZTER G, BRAU F, DE WIT A. Calcium carbonate mineralization in a confined geometry[J]. Environmental Science & Technology Letters, 2016, 3(4): 156-159.
    [35]
    WANG Y Z, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Geotechnique, 2019, 69(12): 1086-1094.
    [36]
    何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm

    HE Xiang, MA Guo-liang, WANG Yang, et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005-1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
    [37]
    HU R, WAN J M, KIM Y, et al. Wettability impact on supercritical co2 capillary trapping: Pore-scale visualization and quantification[J]. Water Resources Research, 2017, 53(8): 6377-6394.
    [38]
    FANIZZA MF, YOON H, ZHANG C, et al. Pore-scale evaluation of uranyl phosphate precipitation in a model groundwater system[J]. Water Resources Research, 2013, 49(2): 874-890.
    [39]
    KIM DH, MAHABADI N, JANG J, et al. Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment[J]. Water Resources Research, 2020, 56(2): e2019WR025420.
    [40]
    TAYLOR H F, O'SULLIVAN C, SIM W W. Geometric and hydraulic void constrictions in granular media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(11): 04016057.
    [41]
    CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation[J]. Canadian Geotechnical Journal, 2013, 50(1): 81-90.
    [42]
    GAO Y F, TANG X Y, CHU J, et al. Microbially induced calcite precipitation for seepage control in sandy soil[J]. Geomicrobiology Journal, 2019, 36(4): 366-375.
    [43]
    BLAUW M, LAMBERT J, LATIL M N. Biosealing: A method for in situ sealing of leakages[C]//International Symposium on Ground Improvement Technologies and Case Histories (ISGI09), 2009, Singapore.
    [44]
    WOEHL T J, EVANS J E, ARSLAN I, et al. Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth[J]. ACS Nano, 2012, 6(10): 8599-8610.
    [45]
    POUGET E M, BOMANS P H H, GOOS J A C M, et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM[J]. Science, 2009, 323(5920): 1455-1458.
    [46]
    DUPRAZ S, PARMENTIER M, MÉNEZ B, et al. Experimental and numerical modeling of bacterially induced ph increase and calcite precipitation in saline aquifers[J]. Chemical Geology, 2009, 265(1/2): 44-53.
    [47]
    EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): 17.
    [48]
    QIN C Z, HASSANIZADEH S M, EBIGBO A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: insight into scale dependence of biogeochemical reaction rates[J]. Water Resources Research, 2016, 52(11): 8969-8985.
    [49]
    FERRIS F G, PHOENIX V, FUJITA Y, et al. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 degrees c in artificial groundwater[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1701-1710.
    [50]
    ZHONG S J, MUCCI A. Calcite and aragonite precipitation from seawater solutions of various salinites - precipitation rates and overgrowth compositions[J]. Chemical Geology, 1989, 78(3/4): 283-299.
    [51]
    ZHANG C Y, DEHOFF K, HESS N, et al. Pore-scale study of transverse mixing induced CaCO3 precipitation and permeability reduction in a model subsurface sedimentary system[J]. Environmental Science & Technology, 2010, 44(20): 7833-7838.
    [52]
    NIEL PLUMMER L, BUSENBERG E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et Cosmochimica Acta, 1982, 46(6): 1011-1040.
  • Cited by

    Periodical cited type(10)

    1. 王军,朱传根,李勋,王波,张艺腾. 类岩石试件三轴扰动破坏特性试验研究. 采矿与岩层控制工程学报. 2024(02): 15-28 .
    2. 王世鸣,白云帆,王嘉琪,吴秋红. 应力波斜入射下砂岩层裂破坏的试验研究. 振动与冲击. 2024(14): 201-210 .
    3. 杨阳,杨仁树,陈骏,方士正,李炜煜,范子儀,张祥,朱锐,张渊通,杨欢,王雁冰. 岩石爆破基础理论研究进展与展望Ⅰ—本构关系. 工程科学学报. 2024(11): 1931-1947 .
    4. 王磊,陈礼鹏,刘怀谦,朱传奇,李少波,范浩,张帅,王安铖. 不同初始瓦斯压力下煤体动力学特性及其劣化特征. 岩土力学. 2023(01): 144-158 .
    5. 李晓照,张骐烁,柴博聪,戚承志. 动力损伤后的脆性岩石静力蠕变断裂模型研究. 力学学报. 2023(04): 903-914 .
    6. 王世鸣,王嘉琪,熊咸瑞,陈正红,桂易林,周健. 斜入射波扰动对岩石层裂的影响(英文). Journal of Central South University. 2023(06): 1981-1992 .
    7. 肖军华,白英琦,张骁,刘志勇,王炳龙. 考虑应力波透反射作用的分层颗粒材料细观动力响应分析. 力学季刊. 2023(03): 620-632 .
    8. 陈绍杰,冯帆,李夕兵,王成,李地元,ROSTAMI Jamal,朱泉企. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题. 中国矿业大学学报. 2023(05): 868-888 .
    9. 李学文,邓凯萱. 高压水射流破除混凝土研究现状及展望. 广东建材. 2022(10): 16-20 .
    10. 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return