• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Kai-kai, ZHANG Zhen, LI Wen-zhou, WANG Xiao-hua, YI Kang, SUN Zhuo-yue. Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1483-1491. DOI: 10.11779/CJGE202108013
Citation: ZHAO Kai-kai, ZHANG Zhen, LI Wen-zhou, WANG Xiao-hua, YI Kang, SUN Zhuo-yue. Three-dimensional simulation of hydraulic fracture from a borehole using XSite[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1483-1491. DOI: 10.11779/CJGE202108013

Three-dimensional simulation of hydraulic fracture from a borehole using XSite

More Information
  • Received Date: August 17, 2020
  • Available Online: December 02, 2022
  • To recognize the three-dimensional near-wellbore propagation of hydraulic fracture, XSite, a simulator developed based on the lattice method and the synthetic rock mass, is used to analyze the influences of borehole orientation and in-situ stress on the propagation of hydraulic fracture. The results show that the variation of borehole orientation leads to the difference of fracture geometry, and the fracture tends to propagate along the plane perpendicular to the minimum principal stress. The increase of the intermediate principal stress will restrain the propagation of fracture perpendicular to this direction, and the hydraulic fracture parallel to this direction becomes straighter. Under a low stress ratio (ratio of the maximum to the minimum principal stresses), multiple fracture branches are induced on the borehole and tend to form a spatial fracture network. The increase in stress ratio will inhibit fracture branching. Under the high stress ratio, fractures tend to propagate along the direction of the maximum principal stress. As the fluid injects into the notch, the fracture will gradually deflect to the plane perpendicular to the minimum principal stress after propagating along the direction of the notch. There are no branches of the fracture that can be observed. The initiation mode does not change the dominating propagation direction of the fracture, but the stress field controls the propagation direction of the hydraulic fracture. The research results can provide references for the design and operation of hydraulic fracture.
  • [1]
    蔡美峰. 岩石力学与工程[M]. 科学出版社, 2013.

    CAI Mei-feng. Rock Mechanics and Engineering[M]. Beijing: Science Press, 2013. (in Chinese)
    [2]
    ZHAO K K, STEAD D, KANG H P, et al. Investigating the interaction of hydraulic fracture with pre-existing joints based on lattice spring modeling[J]. Computers and Geotechnics, 2020, 122: 103534. doi: 10.1016/j.compgeo.2020.103534
    [3]
    SMITH M B, MONTGOMERY C T. Hydraulic Fracturing[M]. Boca Raton: CRC Press, 2015.
    [4]
    黄炳香. 煤岩体水力致裂弱化的理论与应用研究[J]. 煤炭学报, 2010, 35(10): 1765-1766. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201010037.htm

    HUANG Bing-xiang. Research on theory and application of hydraulic fracture weakening for coal-rock mass[J]. Journal of China Coal Society, 2010, 35(10): 1765-1766. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201010037.htm
    [5]
    康红普, 姜鹏飞, 黄炳香, 等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报, 2020, 45(3): 845-864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003001.htm

    KANG Hong-pu, JIANG Peng-fei, HUANG Bing-xiang, et al. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1000 m deep coal mines[J]. Journal of China Coal Society, 2020, 45(3): 845-864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003001.htm
    [6]
    吴拥政, 康红普. 煤柱留巷定向水力压裂卸压机理及试验[J]. 煤炭学报, 2017, 42(5): 1130-1137. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201705007.htm

    WU Yong-zheng, KANG Hong-pu. Pressure relief mechanism and experiment of directional hydraulic fracturing in reused coal pillar roadway[J]. Journal of China Coal Society, 2017, 42(5): 1130-1137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201705007.htm
    [7]
    姜福兴, 王博, 翟明华, 等. 煤层超高压定点水力压裂防冲试验研究[J]. 岩土工程学报, 2015, 37(3): 526-531.

    JIANG Fu-xing, WANG Bo, ZHAI Ming-hua, et al. Field tests on fixed-point hydraulic fracture with extra-high pressure in coal seam for rock burst prevention[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 526-531. (in Chinese)
    [8]
    葛兆龙, 梅绪东, 卢义玉, 等. 煤矿井下水力压裂钻孔封孔力学模型及试验研究[J]. 岩土力学, 2014, 35(7): 1907-1913. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407015.htm

    GE Zhao-long, MEI Xu-dong, LU Yi-yu, et al. Mechanical model and test study of sealed drilling for hydraulic fracturing in underground coal mines[J]. Rock and Soil Mechanics, 2014, 35(7): 1907-1913. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407015.htm
    [9]
    YEW C H, WENG X W. Mechanics of Hydraulic Fracturing[M]. 2nd ed. Amsterdam: Elsevier, 2015.
    [10]
    冯彦军, 康红普. 定向水力压裂控制煤矿坚硬难垮顶板试验[J]. 岩石力学与工程学报, 2012, 31(6): 1148-1155. doi: 10.3969/j.issn.1000-6915.2012.06.008

    FENG Yan-jun, KANG Hong-pu. Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1148-1155. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.06.008
    [11]
    黄炳香, 王友壮. 顶板钻孔割缝导向水压裂缝扩展的现场试验[J]. 煤炭学报, 2015, 40(9): 2002-2008. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201509004.htm

    HUANG Bing-xiang, WANG You-zhuang. Field investigation on crack propagation of directional hydraulic fracturing in hard roof[J]. Journal of China Coal Society, 2015, 40(9): 2002-2008. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201509004.htm
    [12]
    HUBBERT M K, WILLIS D G. Mechanics of hydraulic fracturing[J]. Transactions of the AIME, 1957, 210: 153-168. doi: 10.2118/686-G
    [13]
    HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 2000, 27(3/4): 129-149.
    [14]
    冯彦军, 康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3169-3179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2025.htm

    FENG Yan-jun, KANG Hong-pu. Hydraulic fracturing initiation and propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3169-3179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2025.htm
    [15]
    ABASS H H, HEDAYATI S, MEADOWS D L. Nonplanar fracture propagation from a horizontal wellbore: experimental study[J]. SPE Production and Facilities, 1996, 11(3): 133-137. doi: 10.2118/24823-PA
    [16]
    程远方, 徐太双, 吴百烈, 等. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学, 2013, 24(1): 134-137.

    CHENG Yuan-fang, XU Tai-shuang, WU Bai-lie, et al. Experimental study on the hydraulic fractures morphology of coal bed[J]. Natural Gas Geoscience, 2013, 24(1): 134-137. (in Chinese)
    [17]
    鞠杨, 杨永明, 陈佳亮, 等. 低渗透非均质砂砾岩的三维重构与水压致裂模拟[J]. 科学通报, 2016, 61(1): 82-93. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201601011.htm

    JU Yang, YANG Yong-ming, CHEN Jia-liang, et al. 3D reconstruction of low-permeability heterogeneous glutenites and numerical simulation of hydraulic fracturing behavior[J]. Chinese Science Bulletin, 2016, 61(1): 82-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201601011.htm
    [18]
    李根, 唐春安, 李连崇, 等. 水压致裂过程的三维数值模拟研究[J]. 岩土工程学报, 2010, 32(12): 1875-1881. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012012.htm

    LI Gen, TANG Chun-an, LI Lian-chong, et al. Numerical simulation of 3D hydraulic fracturing process[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1875-1881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012012.htm
    [19]
    严成增, 郑宏, 孙冠华, 等. 基于FDEM-Flow研究地应力对水力压裂的影响[J]. 岩土力学, 2016, 37(1): 237-246. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601029.htm

    YAN Cheng-zeng, ZHENG Hong, SUN Guan-hua, et al. Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow[J]. Rock and Soil Mechanics, 2016, 37(1): 237-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601029.htm
    [20]
    ZHANG F S, MACK M. Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 16-25.
    [21]
    KANG H P, LV H W, GAO F Q, et al. Understanding mechanisms of destressing mining-induced stresses using hydraulic fracturing[J]. International Journal of Coal Geology, 2018, 196: 19-28.
    [22]
    GAO F Q, STEAD D, COGGAN J. Evaluation of coal longwall caving characteristics using an innovative UDEC Trigon approach[J]. Computers & Geotechnics, 2014, 55: 448-460.
    [23]
    DAMJANAC B, DETOURNAY C, CUNDALL P. Application of particle and lattice codes to simulation of hydraulic fracturing[J]. Computational Particle Mechanics, 2016, 3(2): 249-261.
    [24]
    ZHAO K K, STEAD D, KANG H P, et al. Three-dimensional simulation of hydraulic fracture propagation height in layered formations[J]. Environmental Earth Sciences, 2021, 80(12): 435.
    [25]
    ZHAO K K, STEAD D, KANG H P, et al. Three-dimensional numerical investigation of the interaction between multiple hydraulic fractures in horizontal wells[J]. Engineering Fracture Mechanics, 2021, 246: 107620.
    [26]
    BAKHSHI E, RASOULI V, GHORBANI A, et al.. Lattice numerical simulations of lab-scale hydraulic fracture and natural interface interaction[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1315-1337.
    [27]
    DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71(1): 283-294.
    [28]
    CUNDALL P. Lattice method for modeling brittle, jointed rock[C]//2nd International FLAC/DEM Symposium on continuum and distinct element numerical modeling in geo-mechanics. 2011, Melbourne, Australia.
    [29]
    BATCHLOR GK An Introduction To Fluid Dynamics[M]. Cambridge: Cambridge University Press, 1967.
    [30]
    刘正和, 杨录胜, 廉浩杰, 等. 砂岩钻孔轴向预制裂缝定向压裂试验研究[J]. 煤炭学报, 2019, 44(7): 2057-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907012.htm

    LIU Zheng-he, YANG Lu-sheng, LIAN Hao-jie, et al. Experimental study of directional fracturing in sandstones with prefabricated cracks in the axial direction of borehole[J]. Journal of China Coal Society, 2019, 44(7): 2057-2065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907012.htm

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return