• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Tie-lin, ZHOU Mo-zhen. Three-dimensional numerical simulation of slurry fracturing during shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1399-1407. DOI: 10.11779/CJGE202108004
Citation: CHEN Tie-lin, ZHOU Mo-zhen. Three-dimensional numerical simulation of slurry fracturing during shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1399-1407. DOI: 10.11779/CJGE202108004

Three-dimensional numerical simulation of slurry fracturing during shield tunnelling

More Information
  • Received Date: February 18, 2021
  • Available Online: December 02, 2022
  • The slurry shield tunnelling is an important construction method which is widely applied in tunnel engineering. This method can lead to slurry fracturing failure to the stratum under complex conditions. However, there is no readily available method which can be used to study the mechanism of slurry fracturing during shield tunnelling. To provide a convenient tool for this issue, a three-dimensional numerical method is developed based on the smeared crack model and the volume of fluid method. It is implemented numerically in our in-house finite element code and then used to simulate a three-dimensional shield tunnel, wherein the morphology and process of the slurry fracturing are simulated. The fracture-induced displacement is investigated. The effects of the soil cohesion, internal friction, modulus and tunnel size on the fracturing are studied. The numerical results indicate that when the fracture propagates till the stratum surface, a trapezoidal block with wide top and narrow bottom can occur in the stratum above the shield machine. This block is found to produce the most part of the upward deformation for the stratum. As compared with the tunnel with relatively small diameter, the large-diameter tunnel has shorter fracturing path toward the stratum surface and provides easier propagation condition for the fracture after occurrence. It is therefore concluded that the safety rick of fracturing is higher in the large-diameter tunnel.
  • [1]
    王梦恕. 水下交通隧道发展现状与技术难题——兼论“台湾海峡海底铁路隧道建设方案”[J]. 岩石力学与工程学报, 2008, 27(11): 2161-2172. doi: 10.3321/j.issn:1000-6915.2008.11.001

    WANG Meng-shu. Current developments and technical issues of underwater traffic tunnel—discussion on construction scheme of Taiwan Strait undersea railway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2161-2172. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.11.001
    [2]
    袁大军, 沈翔, 刘学彦, 等. 泥水盾构开挖面稳定性研究[J]. 中国公路学报, 2017, 30(8): 24-37. doi: 10.3969/j.issn.1001-7372.2017.08.003

    YUAN Da-jun, SHEN Xiang, LIU Xue-yan, et al. Research on excavation face stability of slurry shield tunneling[J]. China Journal of Highway and Transport, 2017, 30(8): 24-37. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.003
    [3]
    陈孟乔, 刘建坤, 肖军华, 等. 高水压条件下泥水盾构隧道开挖面支护压力特性分析[J]. 岩土工程学报, 2013, 35(增刊2): 163-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2028.htm

    CHEN Meng-qiao, LIU Jian-kun, XIAO Jun-hua, et al. Face supporting pressure of slurry shield tunnel under high hydraulic pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 163-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2028.htm
    [4]
    金大龙, 袁大军, 郑浩田, 等. 高水压条件下泥水盾构开挖面稳定离心模型试验研究[J]. 岩土工程学报, 2019, 41(9): 1653-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909010.htm

    JIN Da-long, YUAN Da-jun, ZHENG Hao-tian, et al. Centrifugal model tests on face stability of slurry shield tunnels under high water pressures[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1653-1660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909010.htm
    [5]
    陈仁朋, 尹鑫晟, 李育超, 等. 泥水盾构泥膜渗透性及其对开挖面稳定性影响[J]. 岩土工程学报, 2017, 39(11): 2102-2108. doi: 10.11779/CJGE201711018

    CHEN Ren-peng, YIN Xin-sheng, LI Yu-Chao, et al. Permeability of filter cake and its influence on face stability of slurry shield-driven tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2102-2108. (in Chinese) doi: 10.11779/CJGE201711018
    [6]
    曹成勇, 施成华, 雷明锋, 等. 浅埋透水地层泥水盾构开挖面极限支护压力研究[J]. 中南大学学报(自然科学版), 2016, 47(9): 3131-3139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201609030.htm

    CAO Cheng-yong, SHI Cheng-hua, LEI Ming-feng, et al. Limit support pressure for excavation face of shallow slurry shield-driven tunnel in water permeable strata[J]. Journal of Central South University (Science and Technology), 2016, 47(9): 3131-3139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201609030.htm
    [7]
    刘海宁, 张亚峰, 刘汉东, 等. 砂土地层中泥水盾构掌子面主动破坏模式试验研究[J]. 岩石力学与工程学报, 2019, 38(3): 572-581. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903013.htm

    LIU Hai-ning, ZHANG Ya-feng, LIU Han-dong, et al. Experimental study on active failure modes of slurry shield-driven tunnel faces in sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 572-581. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903013.htm
    [8]
    李昀, 张子新, 张冠军. 泥水平衡盾构开挖面稳定模型试验研究[J]. 岩土工程学报, 2007, 29(7): 1074-1079. doi: 10.3321/j.issn:1000-4548.2007.07.018

    LI Yun, ZHANG Zi-xin, ZHANG Guan-jun. Laboratory study on face stability mechanism of slurry shields[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(7): 1074-1079. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.07.018
    [9]
    李凤涛, 唐晓武, 刘维, 等. 浅埋泥水盾构隧道开挖面被动失稳分析[J]. 中南大学学报(自然科学版), 2017, 48(7): 1809-1816. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201707018.htm

    LI Feng-tao, TANG Xiao-wu, LIU Wei, et al. Blow-out failure analysis of tunnel face in shallow slurry shield tunneling[J]. Journal of Central South University (Science and Technology), 2017, 48(7): 1809-1816. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201707018.htm
    [10]
    袁大军, 黄清飞, 小泉淳, 等. 水底盾构掘进泥水喷发现象研究[J]. 岩石力学与工程学报, 2007, 26(11): 2296-2301. doi: 10.3321/j.issn:1000-6915.2007.11.016

    YUAN Da-jun, HUANG Qing-fei, KOIZUMI A, et al. Study on slurry-water gushing during underwater shield tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2296-2301. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.11.016
    [11]
    袁大军, 黄清飞, 李兴高, 等.盾构掘进黏土地层泥水劈裂伸展现象研究[J]. 岩土工程学报, 2010, 32(5): 712-717. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005013.htm

    YUAN Da-jun, HUANG Qing-fei, LI Xing-gao, et al. Hydraulic fracture extending during slurry shield tunneling in cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 712-717. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201005013.htm
    [12]
    刘学彦, 袁大军, 郭小红. 现场泥水劈裂试验及应用研究[J]. 岩土工程学报, 2013, 35(10): 1901-1907. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310023.htm

    LIU Xue-yan, YUAN Da-jun, GUO Xiao-hong. Test and application of in-situ slurry fracturing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1901-1907. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201310023.htm
    [13]
    刘学彦, 王复明, 袁大军, 等. 泥水盾构支护压力设定范围及其影响因素分析[J]. 岩土工程学报, 2019, 41(5): 908-917. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905017.htm

    LIU Xue-yan, WANG Fu-ming, YUAN Da-jun, et al. Range of support pressures for slurry shield and analysis of its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 908-917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905017.htm
    [14]
    王滕, 袁大军, 金大龙, 等. 泥水盾构中劈裂压力影响因素研究[J]. 土木工程学报, 2020, 53(增刊1): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1006.htm

    WANG Teng, YUAN Da-jun, JIN Da-long, et al. Influence factors of fracturing pressure during slurry shield tunnelling[J]. China Civil Engineering Journal, 2020, 53(S1): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1006.htm
    [15]
    KURIHARA K, MORI A, TAMURA M. Experiment study on fracturing phenomenon by mud suspension in slurry type shield[J]. Doboku Gakkai Ronbunshu, 1988, 397: 95-104.
    [16]
    MORI A, TAMURA M. Hydraulic fracturing phenomenon during shield tunneling in cohesive soil (No.2)- Hydraulic fracturing phenomenon by backfill grouting pressure[C]//The 24th Japanese Soil Engineering Presentation, 1990: 1773-1774. (in Japanese)
    [17]
    YUAN Da-jun. Experiment Study on Hydraulic Fracturing During Slurry Type Shield Tunneling in Cohesive Soil[D]. Tokyo: Waseda University, 2002. (in Japanese)
    [18]
    刘晶晶, 陈铁林, 姚茂宏, 等. 砂层盾构隧道泥水劈裂试验与数值研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1715-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202009008.htm

    LIU Jing-jing, CHEN Tie-lin, YAO Mao-hong, et al. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1715-1726. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202009008.htm
    [19]
    CHEN T L, ZHANG L Y, ZHANG D L. An FEM/VOF hybrid formulation for fracture grouting modelling[J]. Computers and Geotechnics, 2014, 58: 14-27.
    [20]
    JAFARI A, VAHAB M, KHALILI N. Fully coupled XFEM formulation for hydraulic fracturing simulation based on a generalized fluid leak-off model[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113447.
    [21]
    YI L P, WAISMAN H, YANG Z Z, et al. A consistent phase field model for hydraulic fracture propagation in poroelastic media[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113396.
    [22]
    GHAFFARIPOUR O, ESGANDANI G A, KHOSHGHALB A, et al. Fully coupled elastoplastic hydro-mechanical analysis of unsaturated porous media using a meshfree method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(11): 1919-1955.
    [23]
    孙锋, 张顶立, 陈铁林, 等. 土体劈裂注浆过程的细观 模拟研究[J]. 岩土工程学报, 2010, 32(3): 474-480. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003032.htm

    SUN Feng, ZHANG Ding-li, CHEN Tie-lin, et al. Meso-mechanical simulation of fracture grouting in soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 474-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201003032.htm
    [24]
    王理想, 唐德泓, 李世海, 等. 基于混合方法的二维水力压裂数值模拟[J]. 力学学报, 2015, 47(6): 973-983. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201506010.htm

    WANG Li-xiang, TANG De-hong, LI Shi-hai, et al. Numerical simulation of hydraulic fracturing by a mixed method in two dimensions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 973-983. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201506010.htm
    [25]
    程少振, 陈铁林, 郭玮卿, 等. 土体劈裂注浆过程的数值模拟及浆脉形态影响因素分析[J]. 岩土工程学报, 2019, 41(3): 484-491. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903012.htm

    CHENG Shao-zhen, CHEN Tie-lin, GUO Wei-qing, et al. Numerical simulation of fracture grouting and influencing factors for morphology of grout veins[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 484-491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201903012.htm
    [26]
    CHEN T L, PANG T Z, ZHAO Y, et al. Numerical simulation of slurry fracturing during shield tunnelling[J]. Tunnelling and Underground Space Technology, 2018, 74: 153-166.
    [27]
    朱旻, 龚晓南, 高翔, 等.基于流体体积法的劈裂注浆有限元分析[J]. 岩土力学, 2019, 40(11): 4523-4532. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911044.htm

    ZHU Min, GONG Xiao-nan, GAO Xiang, et al. Volume of fluid method based finite element analysis of fracture grouting[J]. Rock and Soil Mechanics, 2019, 40(11): 4523-4532. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911044.htm
    [28]
    MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments: Part 2 Propagation[J]. Géotechnique, 1993, 43(2): 267-276.
  • Cited by

    Periodical cited type(15)

    1. 牛广利,李天旸,薛广文,崔朋,秦朋,方豪文. 长距离引调水工程智能安全监控预警系统研发及应用. 长江科学院院报. 2025(02): 204-210 .
    2. 张中昊,李赛,汪可欣. 蠕滑-地震动联合作用下跨断层输水隧洞衬砌结构损伤分析. 振动与冲击. 2025(04): 275-285 .
    3. 司才龙,贾治元,贡力. 冰-水耦合作用下流冰对闸墩的撞击破坏力学特性响应. 科学技术与工程. 2025(07): 2943-2950 .
    4. 李艳丽,章志明,桂单明. 基于组合赋权-云模型的城市配水工程质量评价研究. 中国农村水利水电. 2025(03): 14-22 .
    5. 邓子昂,张继勋,张玉贤,孙艳鹏. 代理模型驱动的隧洞支护方案多目标优化方法. 水力发电学报. 2025(04): 59-71 .
    6. 张书豪,艾亚鹏,陈健,靳春玲,姬照泰. 物元可拓法在引水隧洞围岩稳定性评价中的应用. 安全与环境学报. 2024(01): 10-18 .
    7. 方腾卫,杨孟,张建伟,陈磊,曹克磊. TBM引水隧洞组合结构联合承载特性及荷载分担率研究. 广东水利水电. 2024(01): 31-38 .
    8. 徐文韬,徐红超,石长征,伍鹤皋,张超,李端正. 有压引水隧洞多层柔性叠合衬砌对断层蠕滑错动的适应性研究. 岩土工程学报. 2024(05): 998-1007 . 本站查看
    9. 夏求林,吕兴栋,李平刚,周世华,高志扬. PVA纤维、减缩剂和轻烧氧化镁对水工衬砌混凝土性能影响对比研究. 水利水电技术(中英文). 2024(S1): 429-433 .
    10. 黄邦辉,李志荣,左澍琼,邓开来,辜文兰,洪彧. 导水屏障调谐减震渡槽振动台试验. 清华大学学报(自然科学版). 2024(07): 1147-1156 .
    11. 胡江,叶伟,马福恒. 长距离调水工程安全风险综合评估. 南水北调与水利科技(中英文). 2024(03): 417-426 .
    12. 郑书闽,颜建国,郭鹏程,徐燕,李江,刘振兴. 基于VMD及深度学习的供水管道小尺度泄漏检测研究. 水利学报. 2024(08): 999-1008 .
    13. 李颂章,李星霖,韦凡秋,罗亮明,夏裕栋. 基于数字图像修正HC法的水工隧洞围岩精细化分级研究. 中国农村水利水电. 2024(11): 227-232+246 .
    14. 张剑,邹德兵,傅兴安,鲁伟. 超大城市水网深隧绿色建造与智慧工程设计. 水利水电技术(中英文). 2024(S2): 250-254 .
    15. 包娟,钱波,段正刚,庄锦亮. 长距离输水管道水头损失计算可视化程序设计与应用. 云南水力发电. 2023(07): 124-127 .

    Other cited types(8)

Catalog

    Article views (255) PDF downloads (205) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return