• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Ling-feng, WANG Yuan, FENG Di. An improved numerical manifold method for solving heterogeneous seepage problem[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1288-1296. DOI: 10.11779/CJGE202107014
Citation: ZHOU Ling-feng, WANG Yuan, FENG Di. An improved numerical manifold method for solving heterogeneous seepage problem[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1288-1296. DOI: 10.11779/CJGE202107014

An improved numerical manifold method for solving heterogeneous seepage problem

More Information
  • Received Date: September 16, 2020
  • Available Online: December 02, 2022
  • An accurate velocity filed is important for simulating Darcy flow, solution transport and contaminant migration in heterogeneous porous media. Generally, the velocity results calculated by the conventional numerical methods have low precision and poor continuity. To overcome this defect, two improved weight functions are used to construct the global approximation on manifold elements and two improved NMM codes are developed to eliminate the linear dependence problems caused by the higher-order overburden functions, and the velocity/gradient solutions of node continuity and global continuity are obtained, respectively. Furthermore, the convergence and accuracy of the improved weight function NMM codes are analyzed through several examples.
  • [1]
    薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007: 175-178.

    XUE Yu-qun, XIE Chun-hong. Numerical Simulation for Groundwater[M]. Beijing: Science Press, 2007: 175-178. (in Chinese)
    [2]
    BATU V. A finite element dual mesh method to calculate Nodal Darcy velocities in nonhomogeneous and anisotropic aquifers[J]. Water Resources Research, 1984, 20(11): 1705-1717. doi: 10.1029/WR020i011p01705
    [3]
    YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534. doi: 10.1029/WR017i005p01529
    [4]
    谢春红, 赵文良, 张天岭, 等. 地下水不稳定渗流达西速度计算新方法[J]. 岩土工程学报, 1996, 18(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC601.009.htm

    XIE Chun-hong, ZHAO Wen-liang, ZHANG Tian-ling, et al. A new method for calculating the Darcy velocity of unstable groundwater seepage[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC601.009.htm
    [5]
    张湘伟, 章争荣, 吕文阁, 等. 数值流形方法研究及应用进展[J]. 力学进展, 2010, 40(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201001003.htm

    ZHANG Xiang-wei, ZHANG Zheng-rong, LÜ Wen-ge, et al. Advances and perspectives in numerical manifold method and its applications[J]. Advances in Mechanics, 2010, 40(1): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201001003.htm
    [6]
    MA G W, AN X M, HE L. The numerical manifold method: a review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32. doi: 10.1142/S0219876210002040
    [7]
    ZHANG Z R, ZHANG X W, YAN J H. Manifold method coupled velocity and pressure for Navier-Stokes equations and direct numerical solution of unsteady incompressible viscous flow[J]. Computers and Fluids, 2010, 39(8): 1353-1365. doi: 10.1016/j.compfluid.2010.04.005
    [8]
    陈远强, 杨永涛, 郑宏, 等. 饱和-非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(2): 338-347. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm

    CHEN Yuan-qiang, YANG Yong-tao, ZHENG Hong, et al. Saturated-unsaturated seepage by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 338-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
    [9]
    李伟, 郑宏. 基于数值流形法的渗流问题边界处理新方法[J]. 岩土工程学报, 2017, 39(10): 1867-1873. doi: 10.11779/CJGE201710015

    LI Wei, ZHENG Hong. New boundary treatment for seepage flow problem based on numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1867-1873. (in Chinese) doi: 10.11779/CJGE201710015
    [10]
    WANG Y, HU M S, ZHOU Q L, et al. Energy-work-based numerical manifold seepage analysis with an efficient scheme to locate the phreatic surface[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1633-1650. doi: 10.1002/nag.2280
    [11]
    WANG Y, HU M S, ZHOU Q L, et al. A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains[J]. Applied Mathematical Modelling, 2016, 40(2): 1427-1445. doi: 10.1016/j.apm.2015.08.002
    [12]
    SHI G H. Manifold methods of material analysis[C]//Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis, 1991.
    [13]
    唐旭海, 郑超, 吴圣川, 等. 节点应力连续的四边形单元[J]. 应用数学和力学, 2009, 30(12): 1427-1439. doi: 10.3879/j.issn.1000-0887.2009.12.004

    TANG Xu-hai, ZHENG Chao, WU Sheng-chuan, et al. A novel four -node quadrilateral element with continuous nodal stress[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1427-1439. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.12.004
    [14]
    YANG Y T, SUN G H, ZHENG H, et al. A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis[J]. Computers & Structures, 2016, 177: 69-82.
    [15]
    王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 112-113.

    WANG Xu-cheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003: 112-113. (in Chinese)
    [16]
    YANG Y T, SUN G H, ZHENG H. A high-order numerical manifold method with continuous stress/strain field[J]. Applied Mathematical Modelling, 2020, 78: 576-600. doi: 10.1016/j.apm.2019.09.034
    [17]
    谢一凡. 改进多尺度有限单元法求解二维地下水流问题[D]. 南京: 南京大学, 2015: 45-46.

    XIE Yi-fan. Modified Multiscale Finite Element Method for 2-D Groundwater Flow Problems[D]. Nanjing: Nanjing University, 2015: 45-46. (in Chinese)
    [18]
    AN X M, LI L X, MA G W, et al. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(5/6/7/8): 665-674.
    [19]
    赵文凤, 谢一凡, 吴吉春. 一种模拟节点达西渗透流速的双重网格多尺度有限单元法[J]. 岩土工程学报, 2020, 42(8): 1474-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm

    ZHAO Wen-feng, XIE Yi-fan, WU Ji-chun. A dual-mesh multiscale finite element method for simulating nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1474-1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm
    [20]
    GRIFFITHS D V, FENTONT G A. The Random Finite Element Method (RFEM) in Steady Seepage Analysis[M]//CISM Courses and Lectures. Vienna: Springer, 2007: 225-241.
    [21]
    LACY S J, PREVOST J H. Flow through porous media: a procedure for locating the free surface[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(6): 585-601.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return