Citation: | ZHOU Ling-feng, WANG Yuan, FENG Di. An improved numerical manifold method for solving heterogeneous seepage problem[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1288-1296. DOI: 10.11779/CJGE202107014 |
[1] |
薛禹群, 谢春红. 地下水数值模拟[M]. 北京: 科学出版社, 2007: 175-178.
XUE Yu-qun, XIE Chun-hong. Numerical Simulation for Groundwater[M]. Beijing: Science Press, 2007: 175-178. (in Chinese)
|
[2] |
BATU V. A finite element dual mesh method to calculate Nodal Darcy velocities in nonhomogeneous and anisotropic aquifers[J]. Water Resources Research, 1984, 20(11): 1705-1717. doi: 10.1029/WR020i011p01705
|
[3] |
YEH G T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534. doi: 10.1029/WR017i005p01529
|
[4] |
谢春红, 赵文良, 张天岭, 等. 地下水不稳定渗流达西速度计算新方法[J]. 岩土工程学报, 1996, 18(1): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC601.009.htm
XIE Chun-hong, ZHAO Wen-liang, ZHANG Tian-ling, et al. A new method for calculating the Darcy velocity of unstable groundwater seepage[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC601.009.htm
|
[5] |
张湘伟, 章争荣, 吕文阁, 等. 数值流形方法研究及应用进展[J]. 力学进展, 2010, 40(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201001003.htm
ZHANG Xiang-wei, ZHANG Zheng-rong, LÜ Wen-ge, et al. Advances and perspectives in numerical manifold method and its applications[J]. Advances in Mechanics, 2010, 40(1): 1-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201001003.htm
|
[6] |
MA G W, AN X M, HE L. The numerical manifold method: a review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32. doi: 10.1142/S0219876210002040
|
[7] |
ZHANG Z R, ZHANG X W, YAN J H. Manifold method coupled velocity and pressure for Navier-Stokes equations and direct numerical solution of unsteady incompressible viscous flow[J]. Computers and Fluids, 2010, 39(8): 1353-1365. doi: 10.1016/j.compfluid.2010.04.005
|
[8] |
陈远强, 杨永涛, 郑宏, 等. 饱和-非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(2): 338-347. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
CHEN Yuan-qiang, YANG Yong-tao, ZHENG Hong, et al. Saturated-unsaturated seepage by numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 338-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902014.htm
|
[9] |
李伟, 郑宏. 基于数值流形法的渗流问题边界处理新方法[J]. 岩土工程学报, 2017, 39(10): 1867-1873. doi: 10.11779/CJGE201710015
LI Wei, ZHENG Hong. New boundary treatment for seepage flow problem based on numerical manifold method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1867-1873. (in Chinese) doi: 10.11779/CJGE201710015
|
[10] |
WANG Y, HU M S, ZHOU Q L, et al. Energy-work-based numerical manifold seepage analysis with an efficient scheme to locate the phreatic surface[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(15): 1633-1650. doi: 10.1002/nag.2280
|
[11] |
WANG Y, HU M S, ZHOU Q L, et al. A new second-order numerical manifold method model with an efficient scheme for analyzing free surface flow with inner drains[J]. Applied Mathematical Modelling, 2016, 40(2): 1427-1445. doi: 10.1016/j.apm.2015.08.002
|
[12] |
SHI G H. Manifold methods of material analysis[C]//Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis, 1991.
|
[13] |
唐旭海, 郑超, 吴圣川, 等. 节点应力连续的四边形单元[J]. 应用数学和力学, 2009, 30(12): 1427-1439. doi: 10.3879/j.issn.1000-0887.2009.12.004
TANG Xu-hai, ZHENG Chao, WU Sheng-chuan, et al. A novel four -node quadrilateral element with continuous nodal stress[J]. Applied Mathematics and Mechanics, 2009, 30(12): 1427-1439. (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.12.004
|
[14] |
YANG Y T, SUN G H, ZHENG H, et al. A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis[J]. Computers & Structures, 2016, 177: 69-82.
|
[15] |
王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 112-113.
WANG Xu-cheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003: 112-113. (in Chinese)
|
[16] |
YANG Y T, SUN G H, ZHENG H. A high-order numerical manifold method with continuous stress/strain field[J]. Applied Mathematical Modelling, 2020, 78: 576-600. doi: 10.1016/j.apm.2019.09.034
|
[17] |
谢一凡. 改进多尺度有限单元法求解二维地下水流问题[D]. 南京: 南京大学, 2015: 45-46.
XIE Yi-fan. Modified Multiscale Finite Element Method for 2-D Groundwater Flow Problems[D]. Nanjing: Nanjing University, 2015: 45-46. (in Chinese)
|
[18] |
AN X M, LI L X, MA G W, et al. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(5/6/7/8): 665-674.
|
[19] |
赵文凤, 谢一凡, 吴吉春. 一种模拟节点达西渗透流速的双重网格多尺度有限单元法[J]. 岩土工程学报, 2020, 42(8): 1474-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm
ZHAO Wen-feng, XIE Yi-fan, WU Ji-chun. A dual-mesh multiscale finite element method for simulating nodal Darcy velocities in aquifers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1474-1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008018.htm
|
[20] |
GRIFFITHS D V, FENTONT G A. The Random Finite Element Method (RFEM) in Steady Seepage Analysis[M]//CISM Courses and Lectures. Vienna: Springer, 2007: 225-241.
|
[21] |
LACY S J, PREVOST J H. Flow through porous media: a procedure for locating the free surface[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(6): 585-601.
|