• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHOU Chuang-bing. Reliability-based design of slope angles for spatially varying slopes based on inverse first-order reliability method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1245-1252. DOI: 10.11779/CJGE202107009
Citation: JIANG Shui-hua, LIU Xian, HUANG Fa-ming, HUANG Jin-song, ZHOU Chuang-bing. Reliability-based design of slope angles for spatially varying slopes based on inverse first-order reliability method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1245-1252. DOI: 10.11779/CJGE202107009

Reliability-based design of slope angles for spatially varying slopes based on inverse first-order reliability method

More Information
  • Received Date: September 23, 2020
  • Available Online: December 02, 2022
  • Stability analysis and design of soil slopes are a classic problem in geotechnical engineering. The current commonly-used deterministic analysis (e.g., single factor of safety) approach does not quantify the influences of various uncertainties in slope engineering, while the probabilistic analysis approach is time-consuming because it often requires performing multiple rounds of reliability analyses. A slope model reconstruction method that can well adapt to different slope angles is proposed. The reliability-based design of slope angles for spatially varying slopes based on a small amount of test data is carried out using the inverse first order reliability method. To validate the effectiveness of the proposed method, a representative sandy slope is taken as an example, to conduct the reliability-based design of slope angles. The results indicate that the proposed method can obtain a design scheme of slope angle based on a small amount of test data, which is well consistent with engineering practice. It thereby provides an effective tool for the reliability-based design of slope angles for spatially varying slopes. For the sandy slope in this study, an optimized slope angle that achieves various target probabilities of failure can be obtained after 4 or 5 iterative calculations. In contrast, the deterministic analysis method will obtain a biased design scheme since it cannot quantitatively account for the influences of multiple sources of uncertainties in the slope engineering. To yield a target probability of failure of 1×10-4 which is often acceptable for stability evaluation of slopes, the slope angle of the sandy slope designed using the proposed method should be smaller than 14.13°. By contrast, the slope angle designed using the deterministic analysis approach differs significantly from that designed using the proposed method.
  • [1]
    郑颖人, 陈祖煜, 王恭先. 边坡与滑坡工程治理[M]. 2版. 北京: 人民交通出版社, 2010.

    ZHENG Ying-ren, CHEN Zu-yu, WANG Gong-xian. Engineering Treatment of Slope and Landslide[M]. 2nd ed. Beijing: China Communications Press, 2010. (in Chinese)
    [2]
    熊爽, 胡斌, 姚文敏. 露天石灰石矿山岩质边坡坡角优化设计研究[J]. 矿冶工程, 2018, 38(4): 32-35. doi: 10.3969/j.issn.0253-6099.2018.04.008

    XIONG Shuang, HU Bin, YAO Wen-min. Optimization design for rock slope angle in open-pit limestone mine[J]. Mining and Metallurgical Engineering, 2018, 38(4): 32-35. (in Chinese) doi: 10.3969/j.issn.0253-6099.2018.04.008
    [3]
    BATHURST R J, ALLEN T M, WALTERS D L. Reinforcement loads in geosynthetic walls and the case for a new working stress design method[J]. Geotextiles and Geomembranes, 2005, 23(4): 287-322.
    [4]
    ZHOU Y W, ZHANG J X, LI W W, et al. Reliability-based design analysis of frp shear strengthened reinforced concrete beams considering different FRP configurations[J]. Composite Structures, 2020, 237: 111957. doi: 10.1016/j.compstruct.2020.111957
    [5]
    KANNING W, VAN G P. Partial safety factors to deal with uncertainties in slope stability of river dykes[M]//Uncertainty in Industrial Practice. Chichester: John Wiley and Sons, Ltd, 2008: 135-154.
    [6]
    彭兴, 李典庆, 曹子君, 等. 基于蒙特卡洛模拟的岩质边坡可靠度设计方法[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3794-3804. doi: 10.13722/j.cnki.jrme.2014.1210

    PENG Xing, LI Dian-qing, CAO Zi-jun, et al. Reliability-based design approach of rock slopes using Monte Carlo simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3794-3804. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.1210
    [7]
    邓志平, 牛景太, 潘敏, 等. 考虑地层变异性和土体参数空间变异性的边坡可靠度全概率设计方法[J]. 岩土工程学报, 2019, 41(6): 1083-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906014.htm

    DENG Zhi-ping, NIU Jing-tai, PAN Min, et al. Full probabilistic design method for slopes considering geological uncertainty and spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1083-1090. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201906014.htm
    [8]
    陈祖煜, 章吟秋, 宗露丹, 等. 加筋土边坡稳定分析安全判据和标准研究[J]. 中国公路学报, 2016, 29(9): 1-12. doi: 10.3969/j.issn.1001-7372.2016.09.001

    CHEN Zu-yu, ZHANG Yin-qiu, ZONG Lu-dan, et al. Appraisal of safety criteria and standards for stability analysis of geotextile reinforced slopes[J]. China Journal of Highway and Transport, 2016, 29(9): 1-12. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.09.001
    [9]
    李典庆, 周强, 曹子君. 基于广义可靠指标相对安全率的岩土工程设计安全判据[J]. 岩土力学, 2019, 40(10): 3977-3986. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910033.htm

    LI Dian-qing, ZHOU Qiang, CAO Zi-jun. Safety criteria for geotechnical design based on generalized reliability ratio of safety margin[J]. Rock and Soil Mechanics, 2019, 40(10): 3977-3986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910033.htm
    [10]
    苏永华, 罗正东, 杨红波, 等. 基于响应面法的边坡稳定逆可靠度设计分析方法[J]. 水利学报, 2013, 44(7): 764-771. doi: 10.13243/j.cnki.slxb.2013.07.013

    SU Yong-hua, LUO Zheng-dong, YANG Hong-bo, et al. Inverse reliability design analysis of slope stability by response surface method[J]. Journal of Hydraulic Engineering, 2013, 44(7): 764-771. (in Chinese) doi: 10.13243/j.cnki.slxb.2013.07.013
    [11]
    PAPAIOANNOU I, KIUREGHIAN A D. Reliability-based design of slope angle considering spatial variability of soil material[C]//Computational Stochastic Mechanics-Proc of the 6th International Conference (CSM-6), 2010, Rhodos: 1-10.
    [12]
    JI J, ZHANG C, GAO Y, et al. Reliability-based design for geotechnical engineering: an inverse FORM approach for practice[J]. Computers and Geotechnics, 2019, 111: 22-29. doi: 10.1016/j.compgeo.2019.02.027
    [13]
    LOW B K, TANG W H. Efficient spreadsheet algorithm for first-order reliability method[J]. Journal of Engineering Mechanics, 2007, 133(12): 1378-1387. doi: 10.1061/(ASCE)0733-9399(2007)133:12(1378)
    [14]
    蒋水华, 李典庆, 周创兵, 等. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3): 508-518. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403018.htm

    JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, et al. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403018.htm
    [15]
    李典庆, 周创兵, 陈益峰, 等. 边坡可靠度分析的随机响应面法及程序实现[J]. 岩石力学与工程学报, 2010, 29(8): 1513-1523. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008003.htm

    LI Dian-qing, ZHOU Chuang-bing, CHEN Yi-feng, et al. Reliability analysis of slope using stochastic response surface method and code implementation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1513-1523. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008003.htm
    [16]
    ZHANG Y, DER KIUREGHIAN A. Two improved algorithms for reliability analysis[M]//Reliability and Optimization of Structural Systems. Boston: Springer, 1995: 297-304.
    [17]
    JI J, KODIKARA J K. Efficient reliability method for implicit limit state surface with correlated non-Gaussian variables[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(17): 1898-1911. doi: 10.1002/nag.2380
    [18]
    DER KIUREGHIAN A, ZHANG Y, LI C C, et al. Inverse reliability problem[J]. Journal of Engineering Mechanics, 1994, 120(5): 1154-1159. doi: 10.1061/(ASCE)0733-9399(1994)120:5(1154)
    [19]
    JIANG S H, HUANG J S, YAO C, et al. Quantitative risk assessment of slope failure in 2-D spatially variable soils by limit equilibrium method[J]. Applied Mathematical Modelling, 2017, 47: 710-725. doi: 10.1016/j.apm.2017.03.048
    [20]
    STEWARD T, SIVAKUGAN N, SHUKLA S K, et al. Taylor’s slope stability charts revisited[J]. International Journal of Geomechanics, 2011: 11(4): 348-352. doi: 10.1061/(ASCE)GM.1943-5622.0000093
    [21]
    LI D Q, JIANG S H, CAO Z J, et al. A multiple response-surface method for slope reliability analysis considering spatial variability of soil properties[J]. Engineering Geology, 2015, 187: 60-72. doi: 10.1016/j.enggeo.2014.12.003
    [22]
    KULHAWY F H, MAYNE P W. Manual on Estimating Soil Properties for Foundation Design[R]. Palo Alto: Electric Power Research Inst, 1990.
    [23]
    AKKAYA A D, VANMARCKE E H. Estimation of spatial correlation of soil parameters based on data from the Texas A & M University NGES[C]//Probabilistic site characterization at the National Geotechnical Experimentation Sites, Fenton G A and Vanmarcke E H (eds), 2003: 29-40.
    [24]
    PHOON K K, KULHAWY F H. Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. doi: 10.1139/t99-039
    [25]
    SRIVASTAVA A, SIVAKUMAR BABU G L S. Effect of soil variability on the bearing capacity of clay and in slope stability problems[J]. Engineering Geology, 2009, 108(1/2): 142-152.
    [26]
    VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227-1246. doi: 10.1061/AJGEB6.0000517
    [27]
    CHRISTIAN J T, LADD C C, BAECHER G B. Reliability applied to slope stability analysis[J]. Journal of Geotechnical Engineering, 1994, 120(12): 2180-2207. doi: 10.1061/(ASCE)0733-9410(1994)120:12(2180)
    [28]
    JIANG S H, PAPAIOANNOU I, LI C G, et al. Integrating LEM with FEM through model correction factor method in reliability analysis of spatially variable slopes[C]//The 15th International Conference of the International Association for Computer Methods and Advances in Geomechanics, 2017, Wuhan: 1-7.
    [29]
    BAHSAN E, LIAO H J, CHING J, et al. Statistics for the calculated safety factors of undrained failure slopes[J]. Engineering Geology, 2014, 172: 85-94. doi: 10.1016/j.enggeo.2014.01.005
    [30]
    JI J, ZHANG C S, GAO Y F, et al. Effect of 2D spatial variability on slope reliability: a simplified FORM analysis[J]. Geoscience Frontiers, 2018, 9(6): 1631-1638. doi: 10.1016/j.gsf.2017.08.004
  • Cited by

    Periodical cited type(18)

    1. 周顺华,张克平,张小会,张权,裴政川,赵旭伟. 内钢圈加固盾构隧道黏结界面力学性能. 同济大学学报(自然科学版). 2025(02): 177-186 .
    2. 刘洋洋,魏纲,木志远,徐天宝,项鹏飞. 高强砂浆钢筋网加固掉块后盾构管片研究. 低温建筑技术. 2025(02): 56-61 .
    3. 方腾卫,杨孟,张建伟,陈磊,曹克磊. TBM引水隧洞组合结构联合承载特性及荷载分担率研究. 广东水利水电. 2024(01): 31-38 .
    4. 胡梦豪,石钰锋,蒋亚龙,黄展军,张荣锋,顾大均. 超、卸载作用下考虑接头影响的盾构管片承载性能研究. 北京交通大学学报. 2024(01): 20-31 .
    5. 张建伟,刘贺,曹克磊,黄锦林,王勇. TBM有压输水隧洞内张钢圈-管片-围岩组合结构联合承载力学特性分析. 岩土力学. 2024(04): 1154-1169+1180 .
    6. 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制. 浙江大学学报(工学版). 2024(07): 1427-1435 .
    7. 谢家冲,黄昕,金国龙,张子新. 内外水力交互下浅埋带压盾构隧道水土压力计算模型. 岩土工程学报. 2024(08): 1685-1694 . 本站查看
    8. 赵密,张凤琳,黄景琦,赵旭,曹胜涛,杜修力,谢伟杰. 正弯矩循环加载下粘钢加固管片接头动力特性数值模拟研究. 北京工业大学学报. 2024(11): 1326-1338 .
    9. 彭武. 基于钢板加固的盾构隧道管片衬砌承载性能数值模拟研究. 交通节能与环保. 2024(06): 254-261 .
    10. 杨绍毅,封坤,沐海星,薛皓匀,郭文琦,曹翔鹏. 穿越土-岩复合地层的盾构隧道纵向地震响应研究. 土木工程学报. 2024(S2): 133-141 .
    11. 魏义山,钟小春,刘浩源,王建军,张文斌,刘双全. 盾构近距离下穿工况下既有隧道钢环预加固弯曲刚度研究. 土木工程学报. 2024(S2): 120-126 .
    12. 王钦,魏纲,章丽莎,杨仲轩. 旁侧基坑开挖卸载工况下槽钢加固盾构管片的加固效果研究. 隧道建设(中英文). 2023(02): 285-295 .
    13. 杨成. 运营盾构隧道加固后衬砌-钢环复合体系力学性能研究. 广东土木与建筑. 2023(08): 89-92 .
    14. 王儒,翟五洲,倪海波,黄宏伟. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究. 隧道建设(中英文). 2023(S1): 178-188 .
    15. 刘学增,李振,杨芝璐. 盾构隧道钢板加固黏结面作用机制与参数影响分析. 中南大学学报(自然科学版). 2023(10): 3987-3999 .
    16. 石钰锋,胡梦豪,张涛,黄大维,黄展军,陈焕然. 强风化软岩地层盾构隧道荷载及受力特性分析. 隧道建设(中英文). 2023(S2): 91-99 .
    17. 温彦华,王旭. 地铁盾构隧道内张钢圈加固施工技术研究. 轨道交通装备与技术. 2023(S2): 42-45 .
    18. 于阳,孙雅珍,林志军,王金昌,叶友林. 侧向基坑开挖对盾构管片受力及裂损影响. 辽宁工程技术大学学报(自然科学版). 2022(04): 337-344 .

    Other cited types(15)

Catalog

    Article views PDF downloads Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return