Citation: | WANG Lei, JIANG Xiang, XIAO Yang, WU Huan-rang, SHAN Jun-jie, LIU Han-long, YAO Zhi-hua. Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029-1038. DOI: 10.11779/CJGE202106006 |
[1] |
COOP M R, SORENSEN K K, BODAS Freitas T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
|
[2] |
WANG X, JIAO Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1/2/3/4): 40-47.
|
[3] |
XIAO Y, LIU H L, CHEN Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests: II Influence of particle breakage[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014071. doi: 10.1061/(ASCE)GT.1943-5606.0001177
|
[4] |
HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
|
[5] |
JIA Y, XU B, CHI S, et al. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, 2017, 17(10): 04017085. doi: 10.1061/(ASCE)GM.1943-5622.0000977
|
[6] |
MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141. doi: 10.3208/sandf.40.5_133
|
[7] |
LIM W L, MCDOWELL G R, COLLOP A C. The application of Weibull statistics to the strength of railway ballast[J]. Granular Matter, 2004, 6(4): 229-237. doi: 10.1007/s10035-004-0180-z
|
[8] |
XIAO Y, MENG M Q, DAOUADJI A, et al. Effects of particle size on crushing and deformation behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, 11(2): 375-388. doi: 10.1016/j.gsf.2018.10.010
|
[9] |
WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297. doi: 10.1115/1.4010337
|
[10] |
XIAO Y, SUN Z, DESAI C S, et al. Strength and surviving probability in grain crushing under acidic erosion and compression[J]. International Journal of Geomechanics, 2019, 19(11): 15.
|
[11] |
郝圣旺, 白以龙, 夏蒙棼, 等. 准脆性固体的灾变破坏及其物理前兆[J]. 中国科学:物理学 力学 天文学, 2014, 44(12): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201412003.htm
HAO Sheng-wang, BAI Yi-long, XIA Meng-fen, et al. Catastrophic rupture of quasi-brittle solids and its precursors[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(12): 1262-1274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201412003.htm
|
[12] |
KADANOFF L P, NAGEL S R, WU L, et al. Scaling and universality in avalanches[J]. Physical Review A, 1989, 39(12): 6524-6537. doi: 10.1103/PhysRevA.39.6524
|
[13] |
CARLSON J M, LANGER J S, SHAW B E. Dynamics of earthquake faults[J]. Reviews of Modern Physics, 1994, 66(2): 657-670. doi: 10.1103/RevModPhys.66.657
|
[14] |
LHERMINIER S, PLANET R, VEHEL V L D, et al. Continuously sheared granular matter reproduces in detail seismicity laws[J]. Physical Review Letters, 2019, 122(21): 1901.06735V2.
|
[15] |
VIVES E, ORTIN J, MANOSA L, et al. Distributions of avalanches in martensitic transformations[J]. Physical Review Letters, 1994, 72(11): 1694-1697. doi: 10.1103/PhysRevLett.72.1694
|
[16] |
SALJE E K H, DAHMEN K A. Crackling noise in disordered materials[J]. Annual Review of Condensed Matter Physics, 2014, 5(1): 233-254. doi: 10.1146/annurev-conmatphys-031113-133838
|
[17] |
CHANARD K, NICOLAS A, HATANO T, et al. Sensitivity of acoustic emission triggering to small pore pressure cycling perturbations during brittle creep[J]. Geophysical Research Letters, 2019, 46(13): 7414-7423. doi: 10.1029/2019GL082093
|
[18] |
HU W, SCARINGI G, XU Q, et al. Acoustic emissions and microseismicity in granular slopes prior to failure and flow‐like motion: the potential for early warning[J]. Geophysical Research Letters, 2018, 45(19): 10406-10415.
|
[19] |
NAVAS-PORTELLA V, CORRAL A, VIVES E. Avalanches and force drops in displacement-driven compression of porous glasses[J]. Physical Review E, 2016, 94(3): 033005. doi: 10.1103/PhysRevE.94.033005
|
[20] |
XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
|
[21] |
姜德义, 岳好学, 张璇, 等. 砂岩单轴压缩声发射和纤维束模型模拟[J]. 岩土力学, 2017, 38(增刊2): 1-8. doi: 10.16285/j.rsm.2017.S2.001
JIANG De-yi, YUE Hao-xue, ZHANG Xuan, et al. Acoustic emission of sandstone under uniaxial compression and simulation of fiber bundle model[J]. Rock and Soil Mechanics, 2017, 38(S2): 1-8. (in Chinese) doi: 10.16285/j.rsm.2017.S2.001
|
[22] |
XIE K N, JIANG X, JIANG D, et al. Change of crackling noise in granite by thermal damage: Monitoring nuclear waste deposits[J]. American Mineralogist, 2019, 104(11): 578-1584.
|
[23] |
JIANG X, JIANG D Y, CHEN J, et al. Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents[J]. American Mineralogist, 2016, 101(12): 2751-2758. doi: 10.2138/am-2016-5809CCBY
|
[24] |
ZHAO Y F, LIU H L, XIE K N, et al. Avalanches in compressed sandstone: Crackling noise under confinement[J]. Crystals, 2019, 9(11): 582. doi: 10.3390/cryst9110582
|
[25] |
XIE K N, JIANG D Y, SUN Z G, et al. Nmr, mri and ae statistical study of damage due to a low number of wetting-drying cycles in sandstone from the three gorges reservoir area[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3625-3634. doi: 10.1007/s00603-018-1562-6
|
[26] |
JIANG X, LIU H L, MAIN I G, et al. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors[J]. Physical Review E, 2017, 96(2): 023004. doi: 10.1103/PhysRevE.96.023004
|
[27] |
KUN F, VARGA I, LENNARTZ-SASSINEK S, et al. Approach to failure in porous granular materials under compression[J]. Physical Review E, 2013, 88(6): 062207. doi: 10.1103/PhysRevE.88.062207
|
[28] |
SALJE EKH, XUE D, DING X, et al. Ferroelectric switching and scale invariant avalanches in BaTiO3[J]. Physical Review Materials, 2019, 3(1): 014415. doi: 10.1103/PhysRevMaterials.3.014415
|
[29] |
MCDOWELL G R. Statistics of soil particle strength[J]. Géotechnique, 2001, 51(10): 897-900. doi: 10.1680/geot.2001.51.10.897
|
[30] |
SALJE E K H, SOTO-PARRA D E, PLANES A, et al. Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO2[J]. Philosophical Magazine Letters, 2011, 91(8): 554-560. doi: 10.1080/09500839.2011.596491
|
[31] |
JAYATILAKA A D S, TRUSTRUM K. Statistical approach to brittle fracture[J]. Journal of Materials Science, 1977, 12(7): 1426-1430. doi: 10.1007/BF00540858
|
[32] |
MENG M, SUN Z, WANG C, et al. Size effect on mudstone grain strength during freezing-thawing cycles[J]. Environmental Geotechnics, 2019: doi: 10.1680/jenge.18.00160.
|
[33] |
UTSU T, OGATA Y, MATSUURA R S. The centenary of the omori formula for a decay law of aftershock activity[J]. Journal of Physics of the Earth, 1995, 43(1): 1-33. doi: 10.4294/jpe1952.43.1
|
[34] |
BARO J, CORRAL A, ILLA X, et al. Statistical similarity between the compression of a porous material and earthquakes[J]. Physical Review Letters, 2013, 110(8): 088702. doi: 10.1103/PhysRevLett.110.088702
|
[35] |
CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distributions in empirical data[J]. Siam Review, 2009, 51(4): 661-703. doi: 10.1137/070710111
|
[36] |
SALJE E K H, PLANES A, VIVES E. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping[J]. Physical Review E, 2017, 96(4-1): 042122.
|