• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Lei, JIANG Xiang, XIAO Yang, WU Huan-rang, SHAN Jun-jie, LIU Han-long, YAO Zhi-hua. Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029-1038. DOI: 10.11779/CJGE202106006
Citation: WANG Lei, JIANG Xiang, XIAO Yang, WU Huan-rang, SHAN Jun-jie, LIU Han-long, YAO Zhi-hua. Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1029-1038. DOI: 10.11779/CJGE202106006

Experimental research on size effect and avalanche dynamics characteristics of calcareous sand particles

More Information
  • Received Date: June 14, 2020
  • Available Online: December 02, 2022
  • Calcareous sand is widely distributed on the coastal continental shelf and coastline and is the important geotechnical material for coastal engineering. Particle crushing behavior of the calcareous sand brings challenges to the construction of coastal and marine engineering. Single particle compression tests are carried out on the calcareous sand particles with three different average sizes from an island in South China Sea. The test method is mechanical loading with acoustic emission monitoring and real-time observation by optical microscope. The Weibull distribution is used to investigate the single particle strength of the calcareous sand. The size effect is observed on the characteristic strength of the calcareous sand particles. The energy distribution, waiting time distribution and aftershock distribution of acoustic emission (AE) signals are analyzed through the avalanche dynamics statistics. The waiting time distribution and aftershock distribution of the calcareous sand particles with different particle sizes both meet the good power laws and share the same power exponent. For the energy distribution AE, the calcareous sand particles with average particle sizes of 0.9 mm and 1.58 mm demonstrate similar power-law distribution and power exponent (around 1.40), which are both consistent with those of the histogram method and the maximum likelihood estimation method. The power exponent of the calcareous sand with the size of 2.18 mm is significantly larger than that of the particles with other two sizes and exhibits a mixing power law distribution.
  • [1]
    COOP M R, SORENSEN K K, BODAS Freitas T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    [2]
    WANG X, JIAO Y, WANG R, et al. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea[J]. Engineering Geology, 2011, 120(1/2/3/4): 40-47.
    [3]
    XIAO Y, LIU H L, CHEN Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests: II Influence of particle breakage[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014071. doi: 10.1061/(ASCE)GT.1943-5606.0001177
    [4]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [5]
    JIA Y, XU B, CHI S, et al. Research on the particle breakage of rockfill materials during triaxial tests[J]. International Journal of Geomechanics, 2017, 17(10): 04017085. doi: 10.1061/(ASCE)GM.1943-5622.0000977
    [6]
    MCDOWELL G R, AMON A. The application of Weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141. doi: 10.3208/sandf.40.5_133
    [7]
    LIM W L, MCDOWELL G R, COLLOP A C. The application of Weibull statistics to the strength of railway ballast[J]. Granular Matter, 2004, 6(4): 229-237. doi: 10.1007/s10035-004-0180-z
    [8]
    XIAO Y, MENG M Q, DAOUADJI A, et al. Effects of particle size on crushing and deformation behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, 11(2): 375-388. doi: 10.1016/j.gsf.2018.10.010
    [9]
    WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3): 293-297. doi: 10.1115/1.4010337
    [10]
    XIAO Y, SUN Z, DESAI C S, et al. Strength and surviving probability in grain crushing under acidic erosion and compression[J]. International Journal of Geomechanics, 2019, 19(11): 15.
    [11]
    郝圣旺, 白以龙, 夏蒙棼, 等. 准脆性固体的灾变破坏及其物理前兆[J]. 中国科学:物理学 力学 天文学, 2014, 44(12): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201412003.htm

    HAO Sheng-wang, BAI Yi-long, XIA Meng-fen, et al. Catastrophic rupture of quasi-brittle solids and its precursors[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(12): 1262-1274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201412003.htm
    [12]
    KADANOFF L P, NAGEL S R, WU L, et al. Scaling and universality in avalanches[J]. Physical Review A, 1989, 39(12): 6524-6537. doi: 10.1103/PhysRevA.39.6524
    [13]
    CARLSON J M, LANGER J S, SHAW B E. Dynamics of earthquake faults[J]. Reviews of Modern Physics, 1994, 66(2): 657-670. doi: 10.1103/RevModPhys.66.657
    [14]
    LHERMINIER S, PLANET R, VEHEL V L D, et al. Continuously sheared granular matter reproduces in detail seismicity laws[J]. Physical Review Letters, 2019, 122(21): 1901.06735V2.
    [15]
    VIVES E, ORTIN J, MANOSA L, et al. Distributions of avalanches in martensitic transformations[J]. Physical Review Letters, 1994, 72(11): 1694-1697. doi: 10.1103/PhysRevLett.72.1694
    [16]
    SALJE E K H, DAHMEN K A. Crackling noise in disordered materials[J]. Annual Review of Condensed Matter Physics, 2014, 5(1): 233-254. doi: 10.1146/annurev-conmatphys-031113-133838
    [17]
    CHANARD K, NICOLAS A, HATANO T, et al. Sensitivity of acoustic emission triggering to small pore pressure cycling perturbations during brittle creep[J]. Geophysical Research Letters, 2019, 46(13): 7414-7423. doi: 10.1029/2019GL082093
    [18]
    HU W, SCARINGI G, XU Q, et al. Acoustic emissions and microseismicity in granular slopes prior to failure and flow‐like motion: the potential for early warning[J]. Geophysical Research Letters, 2018, 45(19): 10406-10415.
    [19]
    NAVAS-PORTELLA V, CORRAL A, VIVES E. Avalanches and force drops in displacement-driven compression of porous glasses[J]. Physical Review E, 2016, 94(3): 033005. doi: 10.1103/PhysRevE.94.033005
    [20]
    XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057. doi: 10.1061/(ASCE)GT.1943-5606.0002141
    [21]
    姜德义, 岳好学, 张璇, 等. 砂岩单轴压缩声发射和纤维束模型模拟[J]. 岩土力学, 2017, 38(增刊2): 1-8. doi: 10.16285/j.rsm.2017.S2.001

    JIANG De-yi, YUE Hao-xue, ZHANG Xuan, et al. Acoustic emission of sandstone under uniaxial compression and simulation of fiber bundle model[J]. Rock and Soil Mechanics, 2017, 38(S2): 1-8. (in Chinese) doi: 10.16285/j.rsm.2017.S2.001
    [22]
    XIE K N, JIANG X, JIANG D, et al. Change of crackling noise in granite by thermal damage: Monitoring nuclear waste deposits[J]. American Mineralogist, 2019, 104(11): 578-1584.
    [23]
    JIANG X, JIANG D Y, CHEN J, et al. Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents[J]. American Mineralogist, 2016, 101(12): 2751-2758. doi: 10.2138/am-2016-5809CCBY
    [24]
    ZHAO Y F, LIU H L, XIE K N, et al. Avalanches in compressed sandstone: Crackling noise under confinement[J]. Crystals, 2019, 9(11): 582. doi: 10.3390/cryst9110582
    [25]
    XIE K N, JIANG D Y, SUN Z G, et al. Nmr, mri and ae statistical study of damage due to a low number of wetting-drying cycles in sandstone from the three gorges reservoir area[J]. Rock Mechanics and Rock Engineering, 2018, 51(11): 3625-3634. doi: 10.1007/s00603-018-1562-6
    [26]
    JIANG X, LIU H L, MAIN I G, et al. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors[J]. Physical Review E, 2017, 96(2): 023004. doi: 10.1103/PhysRevE.96.023004
    [27]
    KUN F, VARGA I, LENNARTZ-SASSINEK S, et al. Approach to failure in porous granular materials under compression[J]. Physical Review E, 2013, 88(6): 062207. doi: 10.1103/PhysRevE.88.062207
    [28]
    SALJE EKH, XUE D, DING X, et al. Ferroelectric switching and scale invariant avalanches in BaTiO3[J]. Physical Review Materials, 2019, 3(1): 014415. doi: 10.1103/PhysRevMaterials.3.014415
    [29]
    MCDOWELL G R. Statistics of soil particle strength[J]. Géotechnique, 2001, 51(10): 897-900. doi: 10.1680/geot.2001.51.10.897
    [30]
    SALJE E K H, SOTO-PARRA D E, PLANES A, et al. Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO2[J]. Philosophical Magazine Letters, 2011, 91(8): 554-560. doi: 10.1080/09500839.2011.596491
    [31]
    JAYATILAKA A D S, TRUSTRUM K. Statistical approach to brittle fracture[J]. Journal of Materials Science, 1977, 12(7): 1426-1430. doi: 10.1007/BF00540858
    [32]
    MENG M, SUN Z, WANG C, et al. Size effect on mudstone grain strength during freezing-thawing cycles[J]. Environmental Geotechnics, 2019: doi: 10.1680/jenge.18.00160.
    [33]
    UTSU T, OGATA Y, MATSUURA R S. The centenary of the omori formula for a decay law of aftershock activity[J]. Journal of Physics of the Earth, 1995, 43(1): 1-33. doi: 10.4294/jpe1952.43.1
    [34]
    BARO J, CORRAL A, ILLA X, et al. Statistical similarity between the compression of a porous material and earthquakes[J]. Physical Review Letters, 2013, 110(8): 088702. doi: 10.1103/PhysRevLett.110.088702
    [35]
    CLAUSET A, SHALIZI C R, NEWMAN M E J. Power-law distributions in empirical data[J]. Siam Review, 2009, 51(4): 661-703. doi: 10.1137/070710111
    [36]
    SALJE E K H, PLANES A, VIVES E. Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping[J]. Physical Review E, 2017, 96(4-1): 042122.

Catalog

    Article views (319) PDF downloads (178) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return