• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Qian-qing, LI Zhen-bao, MA Bin, LI Liang-liang, LI Shu-an, WU Jian-qun. Vertical bearing behavior of rigid and flexible piles in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002
Citation: ZHANG Qian-qing, LI Zhen-bao, MA Bin, LI Liang-liang, LI Shu-an, WU Jian-qun. Vertical bearing behavior of rigid and flexible piles in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 991-999. DOI: 10.11779/CJGE202106002

Vertical bearing behavior of rigid and flexible piles in pile-supported embankment

More Information
  • Received Date: September 11, 2020
  • Available Online: December 02, 2022
  • The field tests on the pile-supported embankment of an express way in soft soil area are performed to capture the performance of pre-stressed high-strength concrete pipe piles and high-pressure jet grouting piles with time. The rationality of the selection of interface element and constitutive model used in the finite element numerical simulation software is verified according to the comparison between simulated and field test results. The bearing behavior of the pre-stressed high-strength concrete pipe piles under different construction stages is then analyzed by using the finite element numerical simulation software, and a parametric study is made to assess the influences of pile length, pile diameter and area replacement ratio on the performances of the pile-supported embankment. The optimization parameters of the rigid piles in the pile-supported embankment are obtained. The numerical results show that the bearing capacity of piles can be increased due to the loads shared by the pile cap. The ratio of pile cap size to pile spacing has a significant impact on the embankment settlement, and the embankment settlement can be effectively controlled when the ratio is 0.67 to 0.74.
  • [1]
    HAN J, GABR M A. Numerical analysis of geosynthetic- reinforced and pilesupported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 44-53. doi: 10.1061/(ASCE)1090-0241(2002)128:1(44)
    [2]
    BORGES J L, Oliveira . Geosynthetic-reinforced and jet grout column-supported embankments on soft soils: Numerical analysis and parametric study[J]. Computers and Geotechnics, 2011, 38(7): 883-896. doi: 10.1016/j.compgeo.2011.06.003
    [3]
    WU L D, JIANG J L, JU N P. Behavior and numerical evaluation of cement-fly ash-gravel pile-supported embankments over completely decomposed granite soils[J]. International Journal of Geomechanics, 2019, 19(6): 04019048. doi: 10.1061/(ASCE)GM.1943-5622.0001430
    [4]
    蒋建清, 曹国辉, 刘热强. 排水板和砂井联合堆载预压加固海相软土地基的工作性状的现场试验[J]. 岩土力学, 2015, 36(增刊2): 551-558. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm

    JIANG Jian-qing, CAO Guo-hui, LIU Re-qiang. Field test on behaviours of marine soft soil foundation treated with plastic drainage plate and sand column combined with surcharge preloading[J]. Rock and Soil Mechanics, 2015, 36(S2): 551-558. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2078.htm
    [5]
    SHEN S L, CHAI J C, HONG Z S, et al. Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement[J]. Geotextiles and Geomembranes, 2005, 23(6): 463-485. doi: 10.1016/j.geotexmem.2005.05.002
    [6]
    BORGES J L, CARDOSO A S. Structural behavior and parametric study of reinforced embankments on soft clays[J]. Computers and Geotechnics, 2001, 28(3): 209-233. doi: 10.1016/S0266-352X(00)00021-5
    [7]
    HUGHES J M O, WITHERS N J, GREENWOOD D A. Field trial reinforcement effect of a stone column in soil[J]. Geotechnique, 1975, 25(1): 31-44. doi: 10.1680/geot.1975.25.1.31
    [8]
    RAMPELLO S, CALLISTO L. Predicted and observed performance of oil tank founded on soil-cement columns in clay soils[J]. Soils and Foundations, 2003, 43(4): 229-241. doi: 10.3208/sandf.43.4_229
    [9]
    WU L D, JIANG J L, JU N P. Behavior and numerical evaluation of cement-fly ash-gravel pile-supported embankments over completely decomposed granite soils[J]. International Journal of Geomechanics, 2019, 19(6): 04019048. doi: 10.1061/(ASCE)GM.1943-5622.0001430
    [10]
    LIU H L, NG Charles W W, FEI K. Performance of a geogrid-reinforced and pile-supported highway embankment over soft clay: case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(12): 1483-1493. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1483)
    [11]
    REID W M, BUCHANAN N W. Bridge Approach Support Pilling. Pilling and Ground Treatment[D]. London: Thomas Telford Ltd, 1984: 267-274.
    [12]
    LIN K Q, WONG I H. Use of deep cement mixing to reduce settlements at bridge approaches[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(4): 309-320. doi: 10.1061/(ASCE)1090-0241(1999)125:4(309)
    [13]
    陈福全, 李阿池. 桩承式加筋路堤的改进设计方法研究[J]. 岩土工程学报, 2007, 29(12): 1804-1808. doi: 10.3321/j.issn:1000-4548.2007.12.010

    CHEN Fu-quan, LI A-chi. Improved design method of geosynthetic reinforced pile supported embankments on soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1804-1808. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.12.010
    [14]
    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.
    [15]
    LIU S Y, DU Y G, YI Y L, et al. Field investigations on performance of T-shaped deep mixed soil cement column-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(6): 718-727. doi: 10.1061/(ASCE)GT.1943-5606.0000625
    [16]
    郑俊杰, 曹文昭, 董同新, 等. 中低压缩性土地区桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2015, 37(9): 1549-1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509002.htm

    ZHENG Jun-jie, CAO Wen-zhao, DONG Tong-xin, et al. Experimental investigation of geogrid reinforced and pile-supported embankment on soils with medium-low compressibility[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1549-1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509002.htm
    [17]
    CHEN Y M, CAO W P, CHEN R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes, 2008, 26(2): 164-174. doi: 10.1016/j.geotexmem.2007.05.004
    [18]
    VAN Eekelen S J, BEZUIJEN M A, VAN Tol A F. An analytical model for arching in piled embankments[J]. Geotextiles and Geomembranes, 2013, 39: 78-102. doi: 10.1016/j.geotexmem.2013.07.005
    [19]
    VAN Eekelen S J, BEZUIJEN M A, VAN Tol A F. Validation of analytic models for the design of basal reinforced piled embankment[J]. Geotextiles and Geomembranes, 2015, 43(1): 56-81. doi: 10.1016/j.geotexmem.2014.10.002
    [20]
    RUI R, HAN J, ZHANG L, et al. Simplified method for estimating vertical stress-settlement responses of piled embankments on soft soils[J]. Computers and Geotechnics, 2020, 119: 103365. doi: 10.1016/j.compgeo.2019.103365
    [21]
    芮瑞, 夏元友. 桩-网复合地基与桩承式路堤的对比数值模拟[J]. 岩土工程学报, 2007, 29(5): 769-772. doi: 10.3321/j.issn:1000-4548.2007.05.023

    RUI Rui, XIA Yuan-you. Numerical simulation and comparison of pile-net composite foundation with pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 769-772. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.05.023
    [22]
    OH Y I, SHIN E C. Reinforcement and arching effect of geogrid-reinforced and pile-supported embankment on marine soft ground[J]. Marine Georesources and Geotechnology, 2007, 25(2): 97-118. doi: 10.1080/10641190701359591
    [23]
    ABUSHARAR S W, ZHENG J J, CHEN B G, et al. A simplified method for analysis of a piled embankment reinforced with geosynthetics[J]. Geotextiles and Geomembranes, 2009, 27(1): 39-52. doi: 10.1016/j.geotexmem.2008.05.002
    [24]
    ZHOU M, LIU H L, CHEN Y M, et al. First application of cast-in-place concrete large-diameter pipe(PCC) pile reinforced railway foundation: a field study[J]. Canadian Geotechnical Journal, 2015, 53(4): 708-716.
    [25]
    CHEN R P, XU Z Z, CHEN Y M, et al. Field tests on pile-supported embankments over soft ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 777-785. doi: 10.1061/(ASCE)GT.1943-5606.0000295
    [26]
    俞缙, 周亦涛, 鲍胜, 等. 柔性桩承式加筋路堤桩土应力比分析[J]. 岩土工程学报, 2011, 33(5): 705-713. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105010.htm

    YU Jin, ZHOU Yi-tao, BAO Sheng, et al. Pile-soil stress ratio of deformable pile-supported and geosynthetics-reinforced embankments[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 705-713. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105010.htm
    [27]
    BHASI A, RAJAGOPAL K. Numerical study of basal reinforced embankments supported on floating/end bearing piles considering pile-soil interaction[J]. Geotextiles and Geomembranes, 2015, 43(6): 524-536. doi: 10.1016/j.geotexmem.2015.05.003
    [28]
    ROWE R K, LIU K W. Three-dimensional finite element modelling of a full-scale geosynthetic-reinforced, pile- supported embankment[J]. Canadian Geotechnical Journal, 2015, 52(12): 2041-2054. doi: 10.1139/cgj-2014-0506
    [29]
    BOURGEOIS E, BUHAN P de, HASSEN G. Settlement analysis of piled-raft foundations by means of a multiphase model accounting for soil-pile interactions[J]. Computers and Geotechnics, 2012, 46: 26-38. doi: 10.1016/j.compgeo.2012.05.015
    [30]
    LENG J, GABR M A. Numerical analysis of stress-deformation response in reinforced unpaved road sections[J]. Geosynthetics International, 2005, 12(2): 111-119. doi: 10.1680/gein.2005.12.2.111
    [31]
    LEE C J, BOLTON M D, AL-TABBAA A. Numerical modeling of group effects on the distribution of drag loads in pile foundations[J]. Géotechnique, 2002, 52(5): 325-335. doi: 10.1680/geot.2002.52.5.325
    [32]
    HUANG J, HAN J. Two-dimensional parametric study of geosynthetic-reinforced column-supported embankments by coupled hydraulic and mechanical modeling[J]. Computers and Geotechnics, 2010, 37(5): 638-648.
  • Cited by

    Periodical cited type(9)

    1. 胡宏明. 深基坑桩锚支护结构现场试验分析. 福建建材. 2025(01): 76-79+38 .
    2. 赵飞涛. 基于锚固界面力学特性的拉压型锚杆承载特性研究. 长沙理工大学学报(自然科学版). 2025(02): 99-109 .
    3. 董建华,连博,刘国盛,吴晓磊,师利君. 石灰钉复合锚杆加固软弱边坡现场试验研究. 应用基础与工程科学学报. 2024(02): 527-545 .
    4. 曹海莹,穆壮尉,郑凯林,刘亮. 内置锚盘扩大头锚杆承载特性模型试验研究. 公路交通科技. 2023(03): 25-32 .
    5. 南华,赵贝贝,王帅,罗明. 锚固体后置膨胀性对围岩径向增压的影响. 煤矿安全. 2023(05): 232-239 .
    6. 时斌刚,吴骝明,郭晶. 扩大头锚杆承载特性研究进展. 山西建筑. 2023(23): 95-100 .
    7. 袁拴龙,张海亮,罗斌. 抗浮工程中扩大头锚杆的应用. 建筑技术开发. 2022(12): 97-101 .
    8. 蔡强,李宝幸,宋军. 扩大头锚杆研究进展综述. 科学技术与工程. 2022(25): 10819-10828 .
    9. 任东兴,赵勇,薛鹏,高晓峰,罗东林,周向阳. PSB精轧螺纹钢扩大头抗浮锚杆抗拔试验及数值模拟分析. 地质灾害与环境保护. 2022(03): 78-84 .

    Other cited types(9)

Catalog

    Article views (285) PDF downloads (212) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return