Citation: | LIU Fei-yue, LIU Yi-han, YANG Tian-hong, XIN Jun-chang, ZHANG Peng-hai, DONG Xin, ZHANG Hai-tao. Meticulous evaluation of rock mass quality in mine engineering based on machine learning of core photos[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 968-974. DOI: 10.11779/CJGE202105023 |
[1] |
LIU F Y, YANG T H, ZHOU J R, et al. Spatial variability and time decay of rock mass mechanical parameters: a landslide study in the Dagushan open-pit mine[J]. Rock Mechanics and Rock Engineering. 2020, 53(7): 3031-3053. doi: 10.1007/s00603-020-02109-z
|
[2] |
STAVROPOULOU M, EXADAKTYLOS G, SARATSIS G. A combined three-dimensional geological geostatistical numerical model of underground excavations in rock[J]. Rock Mechanics and Rock Engineering, 2007, 40(3): 213-243. doi: 10.1007/s00603-006-0125-4
|
[3] |
GUO J T, WU L X, ZHANG M M, et al. Towards automatic discontinuity trace extraction from rock mass point cloud without triangulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 226-237. doi: 10.1016/j.ijrmms.2018.10.023
|
[4] |
RIQUELME A, ABELLAN A, TOMAS R, et al. A new approach for semi-automatic rock mass joints recognition from 3D point clouds[J]. Computers and Geosciences, 2014, 68: 38-52. doi: 10.1016/j.cageo.2014.03.014
|
[5] |
詹伟, 章杨松. 基于图像处理的岩体结构面迹线半自动检测[J]. 岩土工程技术, 2020, 34(1): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ202001002.htm
ZHAN Wei, ZHANG Yang-song. Semi-automatic detection of rock mass discontinuity trace based on image processing[J]. Geotechnical Engineering Technique, 2020, 34(1): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGJ202001002.htm
|
[6] |
邹先坚, 王川婴, 韩增强, 等. 全景钻孔图像中结构面全自动识别方法研究[J]. 岩石力学与工程学报, 2017, 36(8): 1910-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708010.htm
ZHOU Xian-jian, WANG Chuan-ying, HAN Zeng-qiang, et al. Fully automatic identifying the structural planes with panoramic images of boreholes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1910-1920. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708010.htm
|
[7] |
周永章, 王俊, 左仁广, 等. 地质领域深度学习、深度学习及实现语言[J]. 岩石学报, 2018, 34(11): 3173-3178. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811002.htm
ZHOU Yong-zhang, WANG Jun, ZUO Ren-guang, et al. Machine learning, deep learning and Python language in field of geology[J]. Acta Petrologica Sinica, 34(11): 3173-3178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811002.htm
|
[8] |
ZHANG K, HOU R B, ZHANG G H, et al. Rock drillability assessment and lithology classification based on the operating parameters of a drifter: case study in a coal mine in China[J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 329-334. doi: 10.1007/s00603-015-0723-0
|
[9] |
李明超, 符家科, 张野, 等. 耦合岩石图像与锤击音频的岩性分类智能识别分析方法[J]. 岩石力学与工程学报, 2020, 39(5): 996-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005013.htm
LI Ming-chao, FU Jia-ke, ZHANG Ye, et al. Intelligent recognition and analysis method of rock lithology classification based on coupled rock images and hammering audios[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 996-1004. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202005013.htm
|
[10] |
王鹏宇, 王述红. 四类常见边坡岩石类别识别和边界范围确定的方法[J]. 岩土工程学报, 2019, 41(8): 1505-1512. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm
WANG Peng-yu, WANG Shu-hong. Method for identifying four common rock types of slopes and determining boundary range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1505-1512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908018.htm
|
[11] |
张夏林, 师志龙, 吴冲龙, 等. 基于移动设备的野外地质大数据智能采集和可视化技术[J]. 地质科技通报, 2020, 39(4): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004003.htm
ZHANG Xia-lin, SHI Zhi-long, WU Chong-long, et al. Intelligent data acquisition and visualization technology of field geology based on mobile device[J]. Bulletin of Geological Science and Technology, 2020, 39(4): 21-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202004003.htm
|
[12] |
郑帅, 姜谙男, 张峰瑞, 等. 基于深度学习与可靠度算法的围岩动态分级方法及其工程应用[J]. 岩土力学, 2019, 40(增刊1): 308-318.
ZHENG Shuai, JIANG An-nan, ZHANG Rui-feng, et al. Dynamic classification method of surrounding rock and its engineering application based on machine learning and reliability algorithm[J]. Rock and Soil Mechanics, 2019, 40(S1): 308-318. (in Chinese)
|
[13] |
柳厚祥, 李汪石, 查焕奕, 等. 基于深度学习技术的公路隧道围岩分级方法[J]. 岩土工程学报, 2018, 40(10): 1809-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810008.htm
LIU Hou-xiang, LI Wang-shi, ZHA Zhuan-yi, et al. Method for surrounding rock mass classification of highway tunnels based on deep learning technology[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1809-1817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201810008.htm
|
[14] |
王运敏. 现代采矿手册[M]. 北京: 冶金工业出版社, 2011.
WANG Yun-min. Modern Mining Manual[M]. Beijing: Metallurgical Industry Press, 2011. (in Chinese)
|
[15] |
MAYER J M, STEAD D. A comparison of traditional, step-path, and geostatistical techniques in the stability analysis of a large open pit[J]. Rock Mechanics and Rock Engineering, 2017, 50: 927-949.
|
[16] |
EIVAZY H, ESMAIELI K, JEAN R Modeling geomechanical heterogeneity of rock masses using direct and indirect geostatistical conditional simulation methods[J]. Rock Mechanics and Rock Engineering 2017, 50: 3175-3195.
|
[17] |
HE K, GKIOXARI G, PIOTR D, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV), 2017, Venice: 2980-2988.
|
[18] |
陈昌彦, 王贵荣. 各类岩体质量评价方法的相关性探讨[J]. 岩石力学与工程学报, 2002, 21(12): 1894-1900. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200212033.htm
CHEN Chang-yan, WANG Gui-rong. Discussion on the interrelation of various rock mass quality classification systems at home and abroad[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1894-1900. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200212033.htm
|
[19] |
SHEPHARD M S, GEORGES M K. Automatic three- dimensional mesh generation by the finite octree technique[J]. International Journal for Numerical Methods in Engineering, 1991, 32(4): 709-749.
|