• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Duo, XU Lin-rong, CAI Yu, SU Na. Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 858-866. DOI: 10.11779/CJGE202105009
Citation: FENG Duo, XU Lin-rong, CAI Yu, SU Na. Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 858-866. DOI: 10.11779/CJGE202105009

Semi-analytical solution to dynamic response of transversely isotropic layered foundation-thin plate structure under moving loads

More Information
  • Received Date: March 26, 2020
  • Available Online: December 04, 2022
  • To study the influences of anisotropy and dynamic parameters on the response of a layered foundation-thin plate structure, from the basis of the anisotropic elastodynamics, a semi-analytical solution to the dynamic response of TI layered foundation-thin plate (infinite) model under moving rectangular harmonic loads is established by using the integral transformation and the matrix theory. The accuracy of the semi-analytical solution is verified by comparing the results of the existing examples, and then the parametric analysis of the displacement dynamic response of the plate is carried out. The results show that there is a large difference between the calculated results under the assumption of isotropy and transverse isotropy. Compared with that of the static loads, the displacement amplitude of the moving loads is asymmetric, and there is a critical velocity which makes the maximum amplitude of the loading area. The affected range of the displacement reduces with the increase of the frequency. The anisotropy of the first layer has a greater impact on the displacement than other layers. Adjusting its n value can optimize the displacement characteristics of the plate under dynamic loads.
  • [1]
    郭大智, 冯德成. 层状弹性体系力学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2001.

    GUO Da-zhi, FENG De-cheng. Mechanics of Layered Elastic System[M]. Harbin: Harbin University of Technology Press, 2001. (in Chinese)
    [2]
    凌道盛, 王云龙, 赵云, 等. 飞机主起落架移动荷载作用下道基动力响应分析[J]. 岩土工程学报, 2018, 40(1): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801006.htm

    LING Dao-sheng, WANG Yun-long, ZHAO Yun, et al. Dynamic response of Subgrade under moving loads of main landing gears[J]. Journal of Geotechnical Engineering, 2018, 40(1): 64-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801006.htm
    [3]
    SYNGE L. Elastic waves in anisotropic media[J]. Studies in Applied Mathematics, 1956, 35(1/2/3/4): 323-334.
    [4]
    BUCHWALD V T. Rayleigh waves in transversely isotropic media[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1961(@@@3): 293-318.
    [5]
    MUKHOPADHYAY A. Stresses produced by a normal load moving over a transversely isotropic layer of ice lying on a rigid foundation[J]. Pure and Applied Geophysics, 1965, 60(1): 29-41. doi: 10.1007/BF00874804
    [6]
    BA Z, LIANG J, LEE V W, et al. A semi-analytical method for vibrations of a layered transversely isotropic ground-track system due to moving train loads[J]. Soil Dynamics & Earthquake Engineering, 2019, 121(6): 25-39.
    [7]
    Keawsawasvong SURAPARB, Senjuntichai TEERAPONG. Dynamic interaction between multiple rigid strips and transversely isotropic poroelastic layer[J]. Computers and Geotechnics, 2019, 114: 103-144.
    [8]
    BA Z, AN D. Seismic response of a 3-D canyon in a multi-layered TI half-space modeled by an indirect boundary integral equation method[J]. Geophysical Journal International, 2019, 217(3): 1949-1973. doi: 10.1093/gji/ggz122
    [9]
    RAJAPAKSE Nimal, WANG Y. Green's functions for transversely isotropic elastic half space[J]. Journal of Engineering Mechanics, 1993, 119(9): 1724-1736. doi: 10.1061/(ASCE)0733-9399(1993)119:9(1724)
    [10]
    BARROS F C P D, LUCO J E. Response of a layered viscoelastic half-space to a moving point load[J]. Wave Motion, 1994, 19(2): 189-210. doi: 10.1016/0165-2125(94)90066-3
    [11]
    薛松涛, 谢丽宇. 有阻尼横观各向同性层状场地对入射SH波的响应分析[J]. 工程力学, 2001(@@@A02): 576-580. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200110002119.htm

    XUE Song-tao, XIE Li-yu. Response analysis of damped transversely isotropic layered ground to incident SH wave[J]. Engineering Mechanics, 2001(@@@A02): 576-580. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200110002119.htm
    [12]
    艾智勇, 胡亚东. 3D 横观各向同性地基非耦合解析层元[J]. 岩土工程学报, 2013, 35(增刊2): 717-720. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2131.htm

    AI Zhi-yong, HU Ya-dong. 3D transverse isotropic foundation uncoupled analytical layer element[J]. Journal of geotechnical engineering, 2013, 35(S2): 717-720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2131.htm
    [13]
    韩泽军, 林皋, 周小文, 等. 横观各向同性层状地基上埋置刚性条带基础动力刚度矩阵求解[J]. 岩土工程学报, 2016, 38(6): 1117-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606019.htm

    HAN Ze-jun, LIN Gao, ZHOU Xiao-wen, et al. Solution of dynamic stiffness matrix of embedded rigid strip foundation on transversely isotropic layered foundation[J]. Journal of Geotechnical Engineering, 2016, 38(6): 1117-1124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606019.htm
    [14]
    ESKANDARI-GHADI M. A Complete solution of the wave equations for transversely isotropic media[J]. Journal of Elasticity, 2005, 81(1): 1-19. doi: 10.1007/s10659-005-9000-x
    [15]
    RAHIMIAN M, Eskandari-Ghadi M, PAK R Y, et al. Elastodynamic potential method for transversely isotropic solid[J]. J Eng Mech, 2007, 133(10): 1134-1145.
    [16]
    KHOJASTEH A, RAHIMIAN M, ESKANDARI M, et al. Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials[J]. International Journal of Engineering Science, 2008, 46(7): 690-710. doi: 10.1016/j.ijengsci.2008.01.007
    [17]
    BA Zhen-ning, LIANG J, LEE V W, et al. 3D dynamic response of a multi-layered transversely isotropic half-space subjected to a moving point load along a horizontal straight line with constant speed[J]. International Journal of Solids and Structures, 2016, 100: 427-445.
    [18]
    ACHENBACH J D, KESHAVA S P, HERRMANN G. Moving load on a plate resting on an elastic half space[J]. Journal of Applied Mechanics, 1967, 34(4): 910-914. doi: 10.1115/1.3607855
    [19]
    房营光. 移动载荷作用下横观各向同性地基上无限板的动力响应[J]. 广东工学院学报, 1992(@@@2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGX199202006.htm

    FANG Ying-guang. Dynamic response of infinite plate on transversely isotropic foundation under moving load[J]. Journal of Guangdong Institute of Technology, 1992(@@@2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGX199202006.htm
    [20]
    王博, 张春丽, 祝彦知. 正交各向异性路基路面在移动荷载作用下的空间动力响应[J]. 郑州大学学报(工学版), 2019, 40(1): 54-58, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201901009.htm

    WANG Bo, ZHANG Chun-li, ZHU Yan-zhi. Spatial dynamic response of orthotropic subgrade and pavement under moving load[J]. Journal of Zhengzhou University (Engineering Edition), 2019, 40(1): 54-58, 65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201901009.htm
    [21]
    王春玲, 高典, 刘俊卿. 横观各向同性弹性半空间地基上四边自由各向异性矩形薄板弯曲解析解[J]. 力学季刊, 2015(@@@1): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201501011.htm

    WANG Chun-ling, GAO Dian, LIU Jun-qing. Analytical solution of bending of anisotropic rectangular thin plates on transversely isotropic elastic half space foundation[J]. Quarterly of Mechanics, 2015(@@@1): 99-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201501011.htm
    [22]
    MUHO E V. Dynamic response of an elastic plate on a transversely isotropic viscoelastic half-space with variable with depth moduli to a rectangular moving load[J]. Soil Dynamics and Earthquake Engineering. 2020, 139: 106330.
    [23]
    EUBANKS RA, STERNBERG E. On the axisymmetric problem of elasticity theory for a medium with transverse isotropy[J]. Journal of Rational Mechanics and Analysis, 1954, 3: 89-101.
    [24]
    Michel BOUCHON. Discrete wave number representation of elastic wave fields in three-space dimensions[J]. Journal of Geophysical Research, 1979, 84(B7): 3609-3614.
    [25]
    GAU Qiang, Z Wanxie, HOWSON W P. A precise method for solving wave propagation problems in layered anisotropic media[J]. Wave Motion, 2004, 40(3): 191-207.
    [26]
    卢正, 王长柏, 付建军, 等. 交通荷载作用下公路路基工作区深度研究[J]. 岩土力学, 2013, 34(2): 316-321. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302004.htm

    LU Zheng, WANG Chang-bo, FU Jian-jun, et al. Research on influence depth of road subgrade induced by vehicle loads[J]. Rock and Soil Mechanics, 2013, 34(2): 316-321. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302004.htm
    [27]
    杨广庆. 水泥改良土的动力特性试验研究[J]. 岩石力学与工程学报, 2003, 22(7): 1156-1156. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm

    YANG Guang-qing. Study of dynamic performance of cement-improved soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1156-1156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200307021.htm
  • Cited by

    Periodical cited type(24)

    1. 方华强,丁选明,张灵芝,李一夫,王红,辛义文,彭宇,李铮. 基于粒子图像测速技术的纤维改性珊瑚泥面层龟裂模型试验研究. 岩土力学. 2025(02): 368-380 .
    2. 秦鹏举,轩龙龙,王建美,邢鲜丽. 干湿循环作用下非饱和压实黄土变形和电阻率特征的室内试验. 同济大学学报(自然科学版). 2025(04): 565-573 .
    3. 刘晓红,王宇鑫,刘昱辰,蔡海星,刘三县. 考虑填土压实度的主动破裂带模型试验研究. 湖南理工学院学报(自然科学版). 2025(01): 37-44 .
    4. 牟春梅,李刘悦,夏燚. 基于摄影测量的三轴土体剪切带演化规律. 工程科学学报. 2024(05): 927-936 .
    5. 高乾丰,吴昕阳,曾铃,余慧聪,余涵. 红黏土裂隙湿化自愈行为及强度影响机制. 中国公路学报. 2024(06): 157-168 .
    6. 张少卫,党发宁,范翔宇,管浩. 机制砂级配及含量对压实膨胀土干缩裂隙演化规律. 西安工业大学学报. 2024(03): 366-374 .
    7. 胡长明,胡婷婷,朱武卫,袁一力,杨晓,柳明亮,侯旭辉. 干湿循环作用下压实黄土裂隙演化特征. 长江科学院院报. 2024(08): 96-103+112 .
    8. 张红日,杨济铭,徐永福,肖杰,韩仲,汪磊,林宇亮. 基于数字图像相关技术的膨胀土三维裂隙扩展特性研究. 岩土力学. 2024(S1): 309-323 .
    9. 韩杰欣,邓芷慧,王旌靡,邓羽松,黄智刚,段晓倩. 干湿交替条件下花岗岩崩岗区土壤裂隙发育规律. 水土保持学报. 2024(05): 262-271 .
    10. 杨济铭,张红日,陈林,徐永福. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析. 中南大学学报(自然科学版). 2022(01): 225-238 .
    11. 任意,江兴元,吴长虹,孟生勇,赵珍贤. 干湿循环下红黏土斜坡裂隙性和水土响应试验研究. 水利水电技术(中英文). 2022(04): 172-179 .
    12. 龙郧铠,张家明,陈茂. 中国南方碳酸盐岩上覆红黏土龟裂研究进展. 武汉理工大学学报(交通科学与工程版). 2022(03): 506-512 .
    13. 李关洋,顾凯,王翔,施斌. 含裂隙膨胀土无侧限抗压强度特征试验研究. 水文地质工程地质. 2022(04): 62-70 .
    14. 祝艳波,刘耀文,郑慧涛,赵丹,丁绮萱,兰恒星. 基于DIC技术的三趾马红土表面干缩裂纹扩展与自愈规律. 工程地质学报. 2022(04): 1157-1168 .
    15. 王崇宇,刘晓平,曹周红,毛文涛,蔡忠志. 有限宽度土体被动土压力及滑裂面试验研究. 地下空间与工程学报. 2022(04): 1250-1258+1265 .
    16. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
    17. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
    18. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
    19. 王娜,王佳妮,张晓明,段晓阳. 控制厚度条件下崩岗土体的裂隙演化特征. 水土保持学报. 2021(06): 175-182 .
    20. 张曼婷,吴明亮,陈爱军,潘晓屹,李晨嘉,黄文昭,李文涛. 基于DIC技术的红黏土干缩开裂试验研究. 湖南城市学院学报(自然科学版). 2021(06): 7-11 .
    21. 陈爱军,陈俊桦,程峰,吴迪. 湖南邵阳地区高液限红黏土干缩裂隙演化过程的量化分析. 农业工程学报. 2021(20): 146-153 .
    22. 蔡正银,朱锐,黄英豪,张晨,郭万里,陈皓. 冻融过程对膨胀土渠道边坡劣化模式的影响. 水利学报. 2020(08): 915-923 .
    23. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .
    24. 史晓东,刘洋. 基于特征显著性的地震灾害发生后建筑物裂缝智能检测模型. 灾害学. 2020(04): 38-42 .

    Other cited types(17)

Catalog

    Article views PDF downloads Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return