• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Er-qiang, FENG Ji-li, ZHANG Long-fei, ZHANG Hong-chang, ZHU Tian-yu. Brazilian tests on layered carbonaceous slate under water-rock interaction and weathering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 329-337. DOI: 10.11779/CJGE202102013
Citation: LI Er-qiang, FENG Ji-li, ZHANG Long-fei, ZHANG Hong-chang, ZHU Tian-yu. Brazilian tests on layered carbonaceous slate under water-rock interaction and weathering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 329-337. DOI: 10.11779/CJGE202102013

Brazilian tests on layered carbonaceous slate under water-rock interaction and weathering

More Information
  • Received Date: April 20, 2020
  • Available Online: December 04, 2022
  • The physical-mechanical properties of transversely isotropic layered slates may be degraded due to water-rock interaction (WRI) and natural weathering, which potentially leads to the instability or collapse of tunnels, slopes and mining. In this study, based on the specimens sampled from the carbonaceous slates of Muzhailing Tunnel, the corresponding drying samples (drying in oven after fabrication) and weathering samples (for 60 days’ natural weathering after fabrication) are prepared, respectively. The Brazilian tensile tests are conducted. The test results show that the two kinds of carbonaceous slates are both characterized by brittle failure, but the mechanical response covering failure displacement and the peak load are rather different. Further, the tensile strength are significantly affected by bedding while the cleavage failure patterns are also dominated by bedding. The softening coefficient of the static weathering samples is 0.11~0.13, which implies that the WRI and natural weathering play a vital role in the course of rock failure, but they have few influences on the transverse isotropic tensile properties of bedding. Moreover, the mechanisms of specimen failure are explained by the SEM technique to analyze the micro-components and observe the process of specimen deterioration due to physico-chemical reaction.
  • [1]
    CHO J W, KIM H, JEON S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50(2): 158-169.
    [2]
    DAN D Q, KONIETZKY H, HERBST M. Brazilian tensile strength tests on some anisotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58(2): 1-7.
    [3]
    吕坤, 高旭, 吴峥, 等. 弱黏结复合层状顶板冒顶隐患分级方法与应用[J]. 矿业科学学报, 2018, 3(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201803006.htm

    LÜ Kun, GAO Xu, WU Zheng, et al. Weakly bonding composite layered roof risk classification method and its application[J]. Journal of Mining Science and Technology, 2018, 3(3): 253-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201803006.htm
    [4]
    黄琪嵩, 程久龙. 层状底板采动应力场的解析计算模型研究[J]. 矿业科学学报, 2017, 2(6): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201706006.htm

    HUANG Qi-song, CHENG Jiu-long.Research on analytic calculation model for mining induced stress in multi-layered floor rock[J]. Journal of Mining Science and Technology, 2017, 2(6): 559-565. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201706006.htm
    [5]
    LI Z G, XU G L, HUANG P, et al. Experimental study on anisotropic properties of Silurian silty slates[J]. Geotechnical and Geological Engineering, 2017, 35(2): 1-12.
    [6]
    朱思尘, 李江腾. 干燥和饱水状态下含层理构造板岩巴西劈裂实验能量研究[J]. 中南大学学报(自然科学版), 2018, 49(8): 2024-2030. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808024.htm

    ZHU Si-chen, LI Jiang-teng. Experimental energy study of Brazil test of bedded structural slate under dry and saturated conditions[J]. Journal of Central South University (Science and Technology), 2018, 49(8): 2024-2030. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201808024.htm
    [7]
    张娜, 赵方方, 张毫毫, 等. 岩石气态水吸附特性及其影响因素实验研究[J]. 矿业科学学报, 2017, 2(4): 34-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201704004.htm

    ZHANG Na, ZHAO Fang-fang, ZHANG Hao-hao, et al. Experimental study on water vapor adsorption of rock and its influencing factors[J]. Journal of Mining Science and Technology, 2017, 2(4): 336-347. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201704004.htm
    [8]
    张娜, 王水兵, 何枭, 等. 深部煤系页岩吸水及软化效应微观机理研究[J]. 矿业科学学报, 2019, 2(4): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201904004.htm

    ZHANG Na, WANG Shui-bing, HE Xiao, et al. Study on micromechanism of water absorption and its softening effect on shale rock in deep coal measures[J]. Journal of Mining Science and Technology, 2019, 2(4): 308-317. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201904004.htm
    [9]
    滕腾, 杜玉冰, 陈朋飞, 等. 砂岩变形率与水理效应的力学特性研究[J]. 矿业科学学报, 2020, 5(3): 342-352. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202003013.htm

    TENG Teng, DU Yu-bing, CHEN Peng-fei, et al. Effects of deformation rate and hydrated condition on the mechanical property of sandstone[J]. Journal of Mining Science and Technology, 2020, 5(3): 342-352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202003013.htm
    [10]
    郑明雄, 李保珠, 申岳龙. 贵州泥堡金矿凝灰岩的风化机理[J]. 昆明理工大学学报(自然科学版), 2019, 44(6): 31-38.

    ZHENG Ming-xiong, LI Bao-zhu, SHEN Yue-long. Weathering mechanism of tuff in Guizhou Nibao gold mine[J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(6): 31-38. (in Chinese)
    [11]
    WONG L N Y, MARUVANCHERY V, LIU G. Water effects on rock strength and stiffness degradation[J]. Acta Geotechnica, 2016, 11(4): 713-737.
    [12]
    TAVALLALI A, VERVOORT A. Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 313-322.
    [13]
    NEZHAD M M, FISHER Q J, GIRONACCI E, et al. Experimental study and numerical modeling of fracture propagation in shale rocks during brazilian disk test[J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1755-1775.
    [14]
    KHANLARI G, RAFIEI B, ABDILOR Y. An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones[J]. Rock Mechanics and Rock Engineering, 2015, 48(2): 843-852.
    [15]
    李德建, 祁浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[J]. 矿业科学学报, 2020, 5(2): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202002003.htm

    LI De-jian, QI Hao, LI Chun-xiao, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology, 2020, 5(2): 150-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX202002003.htm
    [16]
    班宇鑫, 傅翔, 谢强, 等. 页岩巴西劈裂裂缝形态评价及功率谱特征分析[J]. 岩土工程学报, 2019, 41(12): 2307-2315. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm

    BAN Yu-xin, FU Xiang, XIE Qiang, et al. Evaluation of fracture morphology of shale in Brazilian tests andanalysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307-2315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm
    [17]
    刘运思, 傅鹤林, 伍毅敏, 等. 基于单弱面理论对板岩巴西劈裂试验研究[J]. 煤炭学报, 2013, 38(10): 1775-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310012.htm

    LIU Yun-si, FU He-lin, WU Yi-min, et al. Study on Brazilian splitting test for slate based on single weak plane theory[J]. Journal of China Coal Society, 2013, 38(10): 1775-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201310012.htm
    [18]
    DEBECKER B, VERVOORT A. Experimental observation of fracture patterns in layered slate[J]. International Journal of Fracture, 2009, 159(1): 51-62.
    [19]
    丁长栋, 胡大伟, 周辉, 等. 考虑三维片理的板岩巴西劈裂试验研究[J]. 岩石力学与工程学报, 2019, 38(2): 90-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902008.htm

    DING Chang-dong, HU Da-wei, ZHOU Hui, et al. Brazil test of slate considering three-dimensional schistosity effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(2): 90-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201902008.htm
    [20]
    GHOLAMI R, RASOULI V. Mechanical and elastic properties of transversely isotropic slate[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1763-1773.
    [21]
    ISRM. Suggested methods for determining tensile strength of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, 1978, 15(3): 99-103.
  • Cited by

    Periodical cited type(10)

    1. 王军,朱传根,李勋,王波,张艺腾. 类岩石试件三轴扰动破坏特性试验研究. 采矿与岩层控制工程学报. 2024(02): 15-28 .
    2. 王世鸣,白云帆,王嘉琪,吴秋红. 应力波斜入射下砂岩层裂破坏的试验研究. 振动与冲击. 2024(14): 201-210 .
    3. 杨阳,杨仁树,陈骏,方士正,李炜煜,范子儀,张祥,朱锐,张渊通,杨欢,王雁冰. 岩石爆破基础理论研究进展与展望Ⅰ—本构关系. 工程科学学报. 2024(11): 1931-1947 .
    4. 王磊,陈礼鹏,刘怀谦,朱传奇,李少波,范浩,张帅,王安铖. 不同初始瓦斯压力下煤体动力学特性及其劣化特征. 岩土力学. 2023(01): 144-158 .
    5. 李晓照,张骐烁,柴博聪,戚承志. 动力损伤后的脆性岩石静力蠕变断裂模型研究. 力学学报. 2023(04): 903-914 .
    6. 王世鸣,王嘉琪,熊咸瑞,陈正红,桂易林,周健. 斜入射波扰动对岩石层裂的影响(英文). Journal of Central South University. 2023(06): 1981-1992 .
    7. 肖军华,白英琦,张骁,刘志勇,王炳龙. 考虑应力波透反射作用的分层颗粒材料细观动力响应分析. 力学季刊. 2023(03): 620-632 .
    8. 陈绍杰,冯帆,李夕兵,王成,李地元,ROSTAMI Jamal,朱泉企. 复杂开采条件下深部硬岩板裂化破坏试验与模拟研究进展和关键问题. 中国矿业大学学报. 2023(05): 868-888 .
    9. 李学文,邓凯萱. 高压水射流破除混凝土研究现状及展望. 广东建材. 2022(10): 16-20 .
    10. 常聚才,齐潮,殷志强,史文豹,贺凯,吴昊原. 动载作用下端锚锚固体力学响应特征研究. 岩土力学. 2022(12): 3294-3304 .

    Other cited types(6)

Catalog

    Article views (268) PDF downloads (140) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return