• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Ke, LIU Wen-jie, JIAO Biao, ZHANG Qing-he, LIU Shuai, ZHANG Zhai-nan. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85-93. DOI: 10.11779/CJGE202101010
Citation: YANG Ke, LIU Wen-jie, JIAO Biao, ZHANG Qing-he, LIU Shuai, ZHANG Zhai-nan. Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 85-93. DOI: 10.11779/CJGE202101010

Three-dimensional physical simulation of overburden migration in deep thick hard roof fully-mechanized caving mining

More Information
  • Received Date: May 10, 2020
  • Available Online: December 04, 2022
  • In order to analyze the influences of breaking of deep thick hard roofs on the safe mining of thick coal seam, a large three-dimensional physical simulation experiment (3500 mm×3000 mm×2000 mm) is constructed, and the experimental study on the double-working face mining with coal pillar is carried out according to the engineering geology and mining conditions of coal face 402102 of Hujiahe Coal Mine. The grating displacement continuous monitoring device is used to monitor the displacement of overburden in real time, and the fracture migration laws and the dynamic evolution characteristics of "three zones" of overburden in thick coal seam mining under thick hard roofs are obtained. The results show that: when the thick and hard key stratum is deformed and broken, the weak rock stratum will move in coordination, the displacement at the monitoring point will increase sharply, and the displacement curve will be pushed forward in a "stepped" way with the advancing of working face. When one side of the working face is mined out, the first weighting interval of SKS1 (siltstone) of working face 402102 is 43 m, and the periodic weighting interval is 21 m. The first weighting interval of SKS2 (coarse sandstone) is 73 m, and the periodic weighting interval is 51 m. The first weighting interval of SKS3 (medium sandstone) is 171 m. When SKS2 breaks periodically and SKS3 breaks for the first time, the overburden rocks move in a wide range and the ground pressure is intense. Under the influences of mining-induced overburden structure in goaf 402103, the overlying rocks of the return airway on the working face 402102 migrate violently, and the roadway is greatly affected by dynamic pressure. According to the displacement at the monitoring points and the size of overburden deformation and fragmentation expansion factor max (Ki), the development morphology of the "three zones" is identified. Both SKS1 and SKS2 are in the caving zone, and the heights of the caving zone and fracture zone increase in a "stepped" manner with the advancing of the working face.
  • [1]
    王家臣. 厚煤层开采理论与技术[M]. 北京: 冶金工业出版社, 2009: 27-51.

    WANG Jia-chen. The theory and Technique on the Thick Coal Seam Mining[M]. Beijing: Metallurgical Industry Press, 2009: 47-51. (in Chinese)
    [2]
    王云广, 郭文兵, 白二虎, 等. 高强度开采覆岩运移特征与机理研究[J]. 煤炭学报, 2018, 43(增刊1): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1004.htm

    WANG Yun-guang, GUO Wen-bing, BAI Er-hu, et al. Characteristics and mechanism of overlying strata movement due to high-intensity mining[J]. Journal of China Coal Society, 2018, 43(S1): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S1004.htm
    [3]
    王家臣. 我国放顶煤开采的工程实践与理论进展[J]. 煤炭学报, 2018, 43(1): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801006.htm

    WANG Jia-chen. Engineering practice and theoretical progress of top coal caving mining technology in China[J]. Journal of China Coal Society, 2018, 43(1): 43-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801006.htm
    [4]
    孟宪锐, 王鸿鹏, 刘朝晖, 等. 我国厚煤层开采方法的选择原则与发展现状[J]. 煤炭科学技术, 2009, 37(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901014.htm

    MENG Xian-rui, GANG Hong-peng, LIU Chao-hui, et al. Selection principle and development status of thick seam minim methods in China[J]. Coal Science and Technology, 2009, 37(1): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ200901014.htm
    [5]
    谢广祥, 杨科, 常聚才, 等. 综放采场围岩支承压力分布及动力灾害的层厚效应[J]. 煤炭学报, 2006, 31(6): 731-735. doi: 10.3321/j.issn:0253-9993.2006.06.008

    XIE Guang-xiang, YANG Ke, CHANG Ju-cai, et al Surrounding rock abutment pressure distribution and thickness effect of dynamic catastrophic in fully mechanized sub level mining stope[J]. Journal of China Coal Society, 2006, 31(6): 731-735. (in Chinese) doi: 10.3321/j.issn:0253-9993.2006.06.008
    [6]
    李振雷, 何学秋, 窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报, 2018, 47(1): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm

    LI Zhen-lei, HE Xue-qiu, DOU Lin-ming. Control measures by overburden and practice for rock burst induced fracture in top-coal caving mining[J]. Journal of China University of Mining and Technology, 2018, 47(1): 162-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm
    [7]
    钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Ming-gao, SHI Ping-wu, XU Jia-ling. Mining Pressure and Strata Control[M]. Xuzhou: China University of Ming and Technology Press, 2010: 325-328. (in Chinese)
    [8]
    许家林, 鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报, 2011, 30(8): 1547-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108006.htm

    XU Jia-lin, JU Jin-feng. Structural morphology of key stratum and its influence on strata behavior in fully mechanized face with super large height[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1547-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108006.htm
    [9]
    张培鹏, 蒋力帅, 刘绪峰, 等. 高位硬件厚岩层采动覆岩结构演化特征及致灾规律[J]. 采矿与安全工程学报, 2017, 34(5): 852-860. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705005.htm

    ZHANG Pei-peng, JIANG Li-shuai, LIU Xu-feng, et al. Mining-induced overlying strata structure evolution characteristic and disaster-triggering undr high level hard thick strata[J]. Journal of Mining and Safety Engineering, 2017, 34(5): 852-860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201705005.htm
    [10]
    柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(1): 44-54. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001006.htm

    CHAI Jing, LEI Wu-lin, DU Wen-gang, et al. Deformation of huge thick compound key layer in stope based on distributed optical fiber sensing monitoring[J]. Journal of China Coal Society, 2020, 45(1): 44-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001006.htm
    [11]
    朱卫兵, 于斌. 大空间采场远场关键层破断形式及其对矿压显现的影响[J]. 煤炭科学技术, 2018, 46(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801014.htm

    ZHU Wei-bing, YU Bin. Breakage form and its effect on strata behavior of far field key stratum in large space stope[J]. Coal Science and Technology, 2018, 46(1): 99-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801014.htm
    [12]
    于斌, 朱卫兵, 高瑞, 等. 特厚煤层综放开采大空间采场覆岩结构及作用机制[J]. 煤炭学报, 2016, 41(3): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm

    YU Bin, ZHU Wei-bing, GAO Rui. Strata structure and its effect mechanism of large space stope for fully-mechanized sublevel caving mining of extremely thick coal seam[J]. Journal of China Coal Society, 2016, 41(3): 571-580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm
    [13]
    于斌, 朱卫兵, 李竹, 等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报, 2018, 43(9): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm

    YU Bin, ZHU Wei-bing, LI Zhu, et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society, 2018, 43(9): 2398-2407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm
    [14]
    窦林名, 贺虎. 煤矿覆岩空间结构OX-F-T演化规律研究[J]. 岩石力学与工程学报, 2012, 31(3): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201203005.htm

    DOU Lin-ming, HE Hu. Study of OX-F-T spatial structure evolution of overlying strata in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 453-460. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201203005.htm
    [15]
    姜福兴, 张兴民, 杨淑华, 等. 长壁采场覆岩空间结构探讨[J]. 岩石力学与工程学报, 2006, 25(5): 979-984. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200605019.htm

    JIANG Fu-xing, ZHANG Xing-min, YANG Shu-hua, et al. Discussion on overlying strata spatial structures of longwall in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 979-984. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200605019.htm
    [16]
    李振雷, 何学秋, 窦林名. 综放覆岩破断诱发冲击地压的防治方法与实践[J]. 中国矿业大学学报, 2018, 47(1): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm

    LI Zhen-lei, HE Xue-qiu, DOU Lin-ming. Control measures by overburden and practice for rock burst induced fracture in top-coal caving mining[J]. Journal of China University of Mining and Technology, 2018, 47(1): 162-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201801021.htm
    [17]
    王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12): 3740-3749. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912015.htm

    WANG Xiao-zhen, XU Jia-lin, HAN Hong-kai. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society, 2019, 44(12): 3740-3749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912015.htm
    [18]
    弓培林, 靳钟铭. 大采高采场覆岩结构特征及运动规律研究[J]. 煤炭学报, 2004, 29(1): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200401002.htm

    GONG Pei-lin, JIN Zhong-ming. Study on the structure characteristics and movement laws of overlying strata with large mining height[J]. Journal of China Coal Society, 2004, 29(1): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200401002.htm
    [19]
    张强勇, 李术才, 郭小红, 等. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学, 2008, 29(8): 2126-2130. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808025.htm

    ZHANG Qiang-yong, LI Shu-cail, GUO Xiao-hong, et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8): 2126-2130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200808025.htm
    [20]
    高富强, 王兴库. 岩体力学参数敏感性正交数值模拟试[J]. 采矿安全与工程学报, 2008, 25(1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200801023.htm

    GAO Fu-qiang, WANG Xing-ku. Orthogonal numerical simulation on sensitivity of rock mechanical parameters[J]. Journal of Mining and Safety Engineering, 2008, 25(1): 95-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL200801023.htm
    [21]
    张庆贺, 杨科, 袁亮, 等. 基于位移连续监测的采场两带变形垮落特性试验研究[J]. 工程科学与技术, 2019, 51(3): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903005.htm

    ZHANG Qing-he, YANG Ke, YUAN Liang, et al. Experimental study on deformation and collapse characteristics of two stope belts based on continuous displacement monitoring[J]. Advanced Engineering Sciences, 2019, 51(3): 36-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201903005.htm
    [22]
    SHAO H, JIANG S G, WANG L Y, et al. Bulking factor of the strata overlying the gob and a three-dimensional numerical simulation of the air leakage flow field[J]. Mining Science and Technology (China), 2011, 21: 261-266.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return