• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Yue-dong, CHEN Ming-jian, ZHOU Yun-feng, LIU Jian. Distribution and basic characteristics of new transparent clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 141-145. DOI: 10.11779/CJGE2020S1028
Citation: WU Yue-dong, CHEN Ming-jian, ZHOU Yun-feng, LIU Jian. Distribution and basic characteristics of new transparent clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 141-145. DOI: 10.11779/CJGE2020S1028

Distribution and basic characteristics of new transparent clay

More Information
  • Received Date: June 02, 2020
  • Available Online: December 07, 2022
  • The synthetic transparent soil is a good tool to study deformation and seepage inside the soil. The traditional transparent soil is mostly aimed at sand, and a unified evaluation system has been not yet formed in terms of quantitative transparency. In view of the above problems, a new type of transparent clay, AVC transparent soil formulation method, and a transparent soil transparency quantitative evaluation method are propesed to compare and analyze the transparency of AVC transparent soil and traditional transparent soil. The compression and solidification characteristics and strength factors of the transparent soil are obtained. The test results show that the AVC transparent clay has visual thickness of 250 mm, and the transparency is better than that of the traditional transparent soil. The compression characteristic is very similar to that of the natural clay, and the solidification coefficient is similar to that of the silt. The peak strength of AVC transparent soil of 2.5% is higher than that of the concentration of LAPONITERD transparent soil of 4.5%.
  • [1]
    ALLERSMA H. Photo-elastic stress analysis and strain in simple shear: IUTAM Conference on Deformation and Failure of Granular Materials[C]//Goteborg, Swed, 1982.
    [2]
    SADEK S, ISKANDER M G, et al. Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal, 2002, 39(1): 111-124. doi: 10.1139/t01-075
    [3]
    孔纲强, 刘璐, 刘汉龙, 等. 玻璃砂透明土变形特性三轴试验研究[J]. 岩土工程学报, 2013, 35(6): 1140-1146.

    KONG Gang-qiang, LIU Wei, LIU Han-long, et al. Three-axis test study of transparent soil deformation characteristics of glass sand[J]. Journal of Geotechnical Engineering, 2013, 35(6): 1140-1146. (in Chinese)
    [4]
    孔纲强, 孙学谨, 肖扬, 等. 透明土与标准砂压缩变形特性对比试验研究[J]. 岩土工程学报, 2016, 38(10): 1895-1903. doi: 10.11779/CJGE201610020

    KONG Gang-qiang, SUN Xue-ming, XIAO Yang, et al. A comparative experimental study of the deformation characteristics of transparent soil and standard sand compression[J]. Journal of Geotechnical Engineering, 2016, 38(10): 1895-1903. (in Chinese) doi: 10.11779/CJGE201610020
    [5]
    孔纲强, 孙学谨, 李辉, 等. 孔隙液体对玻璃砂透明土强度特性影响研究[J]. 岩土工程学报, 2016, 38(2): 377-384.

    KONG Gang-qiang, SUN Xue-cheng, LI Hui, et al. Study on the effect of pore liquid on the strength characteristics of transparent soil in glass sand[J]. Journal of Geotechnical Engineering, 2016, 38(2): 377-384. (in Chinese)
    [6]
    李亮. 透明土合成及物理力学特性研究[D]. 杭州: 浙江大学, 2014.

    LI Liang. Study of Transparent Soil Synthesis and Physical and Physical and Physical Properties[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)
    [7]
    WALLACE J F, RUTHERFORD C J. Geotechnical properties of laponite rd®[J]. Geotechnical Testing Journal, 2015, 38(5): 20140211. doi: 10.1520/GTJ20140211
    [8]
    HAKHAMANESHI M, BLACK J A. Shear strength of transparent gelita-effect of mixture ratio, displacement rate and over-consolidation ratio[C]//Chicago Illinois, US, 2016.
    [9]
    HAKHAMANESHI M, BLACK J A, TATARI A. Optical characterization of transparent gelita using the modulation transfer function[C]//Chicago Illinois, US, 2016.
    [10]
    STANIER S A. Modelling the Behaviour of Helical Screw Piles[D]. University of Sheffield, Department of Civil and Structural Engineering, 2011.
    [11]
    BLACK J A, TAKE W A. Quantification of optical clarity of transparent soil using the modulation transfer function[J]. Geotechnical Testing Journal, 2015(5): 588-602.
    [12]
    房后国. 深圳湾结构性淤泥土固结机理及模型研究[D]. 吉林: 吉林大学, 2005.

    FANG Hou-guo. Study on the Solidification of Structural Silt in Shenzhen Bay[D]. Jilin: Jilin University, 2005. (in Chinese)
    [13]
    吴雪婷. 温州浅滩淤泥固结系数与固结应力关系研究[J]. 岩土力学, 2013, 34(6): 1675-1680.

    WU Xue-xuan. Study on the relationship between shoal sludge solidification coefficient and solidification stress in Wenzhou[J]. Rock and Soil Machanics, 2013, 34(6): 1675-1680. (in Chinese)
    [14]
    张长生, 高明显, 強小俊. 深圳后海湾海相淤泥固结系数变化规律研究[J]. 岩土工程学报, 2013, 35(增刊1): 247-252.

    ZHANG Chang-sheng, GAO Ming-xian, QIANG Xiao-jun. Study on the law of change of the solidification coefficient of sea silt in the back bay of Shenzhen[J]. Journal of Geotechnical Engineering, 2013, 35(S1): 247-252. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return