• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Ji-wei, LIU Shu-jie, ZHANG Song, LI Fang-zheng, HAN Yu-fu, WANG Lei. Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2230-2239. DOI: 10.11779/CJGE202012009
Citation: ZHANG Ji-wei, LIU Shu-jie, ZHANG Song, LI Fang-zheng, HAN Yu-fu, WANG Lei. Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2230-2239. DOI: 10.11779/CJGE202012009

Response characteristics of sound fields of stratum frozen wall of water-rich sand during developing process

More Information
  • Received Date: February 19, 2020
  • Available Online: December 05, 2022
  • The ultrasonic tests on artificial frozen wall of water-rich sand stratum at depth of 16 m in Guangzhou Metro Line 3 are conducted by using NM-4A nonmetal ultrasonic test meter to study the response characteristics of sound fields during developing process of frozen wall. A thermoacoustic coupling numerical simulation method is proposed based on the heat conduction and pressure acoustic theory. The variation rule of temperature-sound field and acoustic characteristic value are obtained. The relationship among freezing front, unclosed distance and wave velocity is grasped. The application process of the thermoacoustic coupling model is summarized. The results are as follows: (1) The accuracy range of wave velocity is 89.7% to 96.97% betweenJ1and J2 holes by the numerical model. (2) The reflection and refraction are obvious when ultrasonic waves transmit from unfrozen soil to frozen soil. The average reflection and refraction coefficients are 0.278 and 1.278 betweenJ1 and J2holes. (3) The concentration area of acoustic pressure appears near the interface between unfrozen and frozen soils, and the sound field is inhomogeneous during early freezing period. Conversely, the sound field is homogeneous, and there is no pressure concentration area. (4) The wave velocity increases with the increasing freezing time, while both the acoustic pressure and the sound intensity increase first, then decrease as the freezing time increases. (5) Both the freezing front and the unclosed distance increase with the increasing wave velocity, and they meet quadratic function relations, indicating that the correlation is very good. (6) The application process of the thermoacoustic coupling model is summarized, which can achieve good effect on developing evaluation of frozen wall.
  • [1]
    ARMAGHANI D J, AMIN M F M, YAGIZ S, et al. Prediction of the uniaxial compressive strength of sandstone using various modeling techniques[J]. Int J Rock Mech Mining Sci 2016, 85: 174-186. doi: 10.1016/j.ijrmms.2016.03.018
    [2]
    VITEL M, ROUABHI A, TIJANI M, et al. Thermo-hydraulic modeling of artificial ground freezing: application to an underground mine in fractured sandstone[J]. Computers and Geotechnics, 2016, 75: 80-92. doi: 10.1016/j.compgeo.2016.01.024
    [3]
    杨平, 陈瑾, 张尚贵, 等. 软弱地层联络通道冻结法施工温度及位移场全程实测研究[J]. 岩土工程学报, 2017, 39(12): 2226-2234. doi: 10.11779/CJGE201712011

    YANG Ping, CHEN Jin, ZHANG Shang-gui, et al. Whole range monitoring for temperature and displacement fields of cross passage in soft soils by AGF[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2226-2234. (in Chinese) doi: 10.11779/CJGE201712011
    [4]
    张基伟, 刘志强, 单仁亮, 等. 复杂地层井筒冻结壁异常状况监测技术研究现状与展望[J]. 煤炭科学技术, 2019, 47(1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201901050.htm

    ZHANG Ji-wei, LIU Zhi-qiang, SHAN Ren-liang, et al. Review and prospect of abnormal condition of shaft frozen wall monitoring technique in complex formation condition[J]. Coal science and technology, 2019, 47(1): 103-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201901050.htm
    [5]
    ALZOUBI M A, MADISEH A, HASSANI F P, et al. Heat transfer analysis in artificial ground freezing under high seepage: validation and heatlines visualization[J]. International Journal of Thermal Sciences, 2019, 139: 232-245. doi: 10.1016/j.ijthermalsci.2019.02.005
    [6]
    胡向东. 直线形单排管冻土帷幕平均温度计算方法[J]. 冰川冻土, 2010, 32(4): 142-149. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004019.htm

    HU Xiang-dong. Average temperature calculation for the straight single-row-pipe frozen soil wall[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 142-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201004019.htm
    [7]
    蔡海兵, 程桦, 姚直书, 等. 基于冻土正交各向异性冻胀变形的隧道冻结期地层位移数值分析[J]. 岩石力学与工程学报, 2015, 34(8): 1667-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508019.htm

    CAI Hai-bing, CHENG Hua, YAO Zhi-shu, et al. Numerical analysis of ground displacement due to orthotropic frost heave of frozen soil in freezing period of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8): 1667-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508019.htm
    [8]
    宋雷, 张小俊, 杨维好, 等. 人工冻结工程地质雷达模型试验研究[J]. 岩土工程学报, 2012(1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201011.htm

    SONG Lei, ZHANG Xiao-jun, YANG Wei-hao, et al. Experimental study on GPR model for artificial freezing projects[J]. Journal of Geotechnical Engineering, 2012(1): 115-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201201011.htm
    [9]
    赵建铧, 周崇良. 声波透射法检测对桩基质量的分析与判别[J]. 岩土工程技术, 2012, 26(4): 200-203. doi: 10.3969/j.issn.1007-2993.2012.04.010

    ZHAO Jian-hua, ZHOU Chong-liang. Waves penetrating tests of the quality analysis and discretion in pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2012, 26(4): 200-203. (in Chinese) doi: 10.3969/j.issn.1007-2993.2012.04.010
    [10]
    KURFURST P J. Ultrasonic wave measurements on frozen soils at permafrost temperatures[J]. Canadian Journal of Earth Sciences, 1976, 13(11): 1571-1576.
    [11]
    NAKANO Y, MARTIN A J, SMITH M. Ultrasonic velocities of the dilatational and shear waves in frozen soils[J]. Water Resources Research, 1972, 8(4): 1024-1030.
    [12]
    THIMUS J Fr, Aguirre-Puente J, Cohen-Tenoudji FR. Determination of unfrozen water content of an over consolidated clay down to −160℃ by sonic approaches—Comparison with classical methods[C]//International Symposium on Ground Freezing, 1991, Rotterdam.
    [13]
    MARTIN Christ, PARK Jun-Boum. Ultrasonic technique as tool for determining physical and mechanical properties of frozen soils[J]. Cold Regions Science and Technology, 2009, 3(58): 136-142.
    [14]
    LI Dong-qing, XING H, FENG M, et al. The impact of unfrozen water content on ultrasonic wave velocity in frozen soils[J]. Procedia Engineering, 2016, 143(1): 1210-1217.
    [15]
    WAND D Y, ZHU Y L, MA W, et al. Application of ultrasonic technology for physical-mechanical properties of frozen soils[J]. Cold Regions Science and Technology, 2006, 44(1): 12-19.
    [16]
    杨平, 李强, 郁楚侯. 人工冻土声波参数实验研究[J]. 冰川冻土, 1997, 19(2): 149-153.

    YANG Ping, LI Qiang, YU Chu-hou. An experimental study on the acoustic wave parameters of artifical frozen soil[J]. Journal of Glaciology and Geocryology, 1997, 19(2): 149-153. (in Chinese)
    [17]
    黄星, 李东庆, 明锋, 等. 冻结粉质黏土声学特性与物理力学性质试验研究[J]. 岩石力学与工程学报, 2015, 34(7): 1489-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507022.htm

    HUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study on acoustic characteristics and physical-mechnical properties off frozen slity clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1489-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507022.htm
    [18]
    李言钦, 姬会东, 周俊杰, 等. 声波法测量炉内温度场有限元模拟研究[J]. 动力工程学报, 2014, 34(11): 837-842, 866. https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201411001.htm

    LI Yan-qin, JI Hui-dong, ZHOU Jun-jie, et al. Finite element simulation on acoustic measurement of the in-furnace temperature field[J]. Journal of Chinese Society of Power Engineering, 2014, 34(11): 837-842, 866. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DONG201411001.htm
    [19]
    邹大鹏, 吴百海, 卢博, 等. 温度对水饱和孔隙介质压缩波速度的影响[J]. 声学技术, 2008(4): 492-496. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS200804003.htm

    ZOU WU Da-peng, HU Bai-hai, LU Bo, et al. Thermal effect on compressional speed of water-saturated porous medium[J]. Technical Acoustics, 2008(4): 492-496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXJS200804003.htm
    [20]
    杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 南京: 南京大学出版社, 2001.

    DU Gong-huan, ZHU Zhe-min, GONG Xiu-fen. Basic of Acoustics[M]. Nanjing: Nanjing University Press, 2001. (in Chinese)

Catalog

    Article views (234) PDF downloads (121) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return