• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HU Ya-yuan. Elastoplastic model for saturated rock based on mixture theory[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2161-2169. DOI: 10.11779/CJGE202012001
Citation: HU Ya-yuan. Elastoplastic model for saturated rock based on mixture theory[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2161-2169. DOI: 10.11779/CJGE202012001

Elastoplastic model for saturated rock based on mixture theory

More Information
  • Received Date: December 28, 2019
  • Available Online: December 05, 2022
  • In order to avoid the difficulties in evaluating the Biot's coefficient value of Skempton's effective stress used to formulate nonlinear constitutive model, the engineering mixture theory is chosen to build the elastoplastic model for saturated rock. Firstly, according to the principle of homogeneous response in the engineering mixture theory, the constitutive laws of saturated porous media are revealed as follows: "The solid matrix bulk strain determines solid matrix pressure, the skeleton elastic and plastic strains determine Terzaghi's effective stress and dissipate Terzaghi's effective stress, and the fluid matrix bulk strain determines pore pressure". Secondly, according to the Hoek-Brown yielding criterion and the non-associated flow rule, the saturated rock elastoplastic model is provided on the basis of the existing rock damage model. Finally, the proposed saturated rock elastoplastic model is validated by the triaxial drained and undrained shear test results. The researches show that the saturated rock elastoplastic model based on the engineering mixture theory can fairly accurately simulate the macroscopic mechanical behaviors of the overall stress-strain curve of rock including elastic stage, elastoplastic stage and descending stage, and illustrate the changing rule in the triaxial undrained shear tests that the pore pressure increases first and then decreases with the exteral shear stress. The engineering mixture theory does not use the Skempton's effective stress to build model, as a result, it can overcome the difficulties in determining the formula for Biot's coefficients in Biot's nonlinear model and is more convenient to establish the elastoplastic model for saturated rock.
  • [1]
    赵阳升. 多孔介质多场耦合作用及其工程响应[M]. 北京: 科学出版社, 2010.

    ZHAO Yang-sheng. Multi-field Coupling Action of Porous Media and its Application Responces[M]. Beijing: Science Press, 2010. (in Chinese)
    [2]
    王媛, 徐志英, 速宝玉. 裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J]. 水利学报, 1998(7): 55-59. doi: 10.3321/j.issn:0559-9350.1998.07.012

    WANG Yuan, XU Zhi-ying, SU Bao-yu. Four-freedom complete method for the seepage-stress coupled analysis in fissured rock masses[J]. Journal of Hydraulic Engineering, 1998(7): 55-59. (in Chinese) doi: 10.3321/j.issn:0559-9350.1998.07.012
    [3]
    盛金昌, 速宝玉, 王媛, 等. 裂隙岩体渗流-弹塑性应力耦合分析[J]. 岩石力学与工程学报, 2000, 19(3): 304-309. doi: 10.3321/j.issn:1000-6915.2000.03.010

    SHENG Jin-chang, SU Bao-yu, WANG Yuan, et al. Coupling analysis of elasto-plastic stress and fluid flow in jointed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 304-309. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.03.010
    [4]
    李广信. 关于有效应力原理的几个问题[J]. 岩土工程学报, 2011, 33(2): 316-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201102028.htm

    LI Guang-xin. Some problems about principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 316-320. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201102028.htm
    [5]
    陈晶晶, 雷国辉. 决定饱和岩土材料变形的有效应力及孔压系数[J]. 岩土力学, 2012, 33(12): 3696-3703. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212028.htm

    CHEN Jing-jing, LEI Guo-hui. Effective stress and pore pressure coefficient controlling the deformation of saturated geomaterials[J]. Rock and Soil Mechanics, 2012, 33(12): 3696-3703. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201212028.htm
    [6]
    张国新. 多孔连续介质渗透压力对变形应力影响的数值模拟方法探讨[J]. 水利学报, 2017, 48(6): 640-650. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201706002.htm

    ZHANG Guo-xin. Study on numerical simulation method used in analyzing the effect of seepage pressure in continuous medium with pores on deformation and stress[J]. Journal of Hydraulic Engineering, 2017, 48(6): 640-650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201706002.htm
    [7]
    周创兵. 复杂岩体多场广义耦合分析导论[M]. 北京: 中国水利水电出版社, 2008.

    ZHOU Chuang-bing. An Introduction to Multi-Field Generalized Coupling Analysis on Complex Rock Mass[M]. Beijing: China Water & Power Press, 2008. (in Chinese)
    [8]
    许江, 杨红伟, 彭守建, 等. 孔隙水压力-围压作用下砂岩力学特性的试验研究[J]. 岩石力学与工程学报, 2010, 29(8): 1618-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008016.htm

    XU Jiang, YANG Hong-wei, PENG Shou-jian, et al. Experimental study of mechanical property of sandstone under pore water pressure and confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1618-1623. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008016.htm
    [9]
    张俊文, 宋治祥, 范文兵, 等. 应力-渗流耦合下砂岩力学行为与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(7): 1364-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907007.htm

    ZHANG Jun-wen, SONG Zhi-xiang, FAN Wen-bing, et al. Experimental study on mechanical behavior and permeability characteristics of sandstone under stress-seepage coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1364-1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907007.htm
    [10]
    HU D W, ZHOU H, ZHANG F, et al. Evolution of poroelastic properties and permeability in damaged sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 962-973. doi: 10.1016/j.ijrmms.2010.06.007
    [11]
    王伟, 田振元, 朱其志, 等. 考虑孔隙水压力的岩石统计损伤本构模型研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 3676-3682. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2008.htm

    WANG Wei, TIAN Zhen-yuan, ZHU Qi-zhi, et al. Study of statistical damage constitutive model for rock considering pore water pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3676-3682. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2008.htm
    [12]
    谢妮, 徐礼华, 邵建富, 等. 法向应力和水压力作用下岩石单裂隙水力耦合模型[J]. 岩石力学与工程学报, 2011, 30(增刊2): 3796-3803. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2056.htm

    XIE Ni, XU Li-hua, SHAO Jian-fu, et al. Coupled hydro-mechanical modeling of rock fractures subject to both normal stress and fluid pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S2): 3796-3803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2056.htm
    [13]
    朱其志, 王岩岩, 仇晶晶, 等. 准脆性岩石水力耦合不排水多尺度本构模型[J]. 河海大学学报(自然科学版), 2018, 46(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201802014.htm

    ZHU Qi-zhi, WANG Yan-yan, QIU Jing-jing, et al. Multiscale hydro-mechanical constitutive model for qusi-brittle rocks under undrained condition[J]. Journal of Hohai University (Natural Sciences), 2018, 46(2): 165-170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201802014.htm
    [14]
    CHEN Y F, HU S H, WEI K, et al. Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 64-76.
    [15]
    陈正汉. 岩土力学的公理化理论体系[J]. 应用数学和力学, 1994, 15(10): 901-910. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX410.007.htm

    CHEN Zheng-han. An axiomatics of geomechanics[J]. Applied Mathematics and Mechanics (English Edition), 1994, 15(10): 901-910. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX410.007.htm
    [16]
    陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm

    CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201402002.htm
    [17]
    HOULSBY G T. The work input to an unsaturated granular material[J]. Géotechnique, 1997, 47(1): 193-196.
    [18]
    BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J]. International Journal of Solids and Structures, 2006, 43: 1764-1786.
    [19]
    赵成刚, 刘艳. 连续孔隙介质土力学及其在非饱和土本构关系中的应用[J]. 岩土工程学报, 2009, 31(9): 1324-1335. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200909005.htm

    ZHAO Cheng-gang, LIU Yan. Continuum porous medium soil mechanics and its application in constitutive relationship of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1324-1335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200909005.htm
    [20]
    刘艳, 赵成刚, 蔡国庆. 理性土力学与热力学[M]. 北京: 科学出版社, 2016: 66-84.

    LIU Yan, ZHAO Cheng-gang, CAI Guo-qing. Rational Soil Mechanics and Thermodynamics[M]. Beijing: Science Press, 2016: 66-84. (in Chinese)
    [21]
    胡亚元. 关于率无关塑性力学和广义塑性力学的评述[J]. 岩土工程学报, 2005, 27(1): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050100N.htm

    HU Ya-yuan. Comment on rate-independent plasticity and generalized plasticity[J]. China Journal of Geotechnical Engineering, 2005, 27(1): 128-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050100N.htm
    [22]
    胡亚元. 饱和多孔介质的超黏弹性本构理论研究[J]. 应用数学和力学, 2016, 37(6): 584-598. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201606004.htm

    HU Ya-yuan. Study on the super viscoelastic constitutive theory for saturated porous media[J]. Applied Mathematics and Mechanics, 2016, 37(6): 584-598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201606004.htm
    [23]
    GEERTSMA J. The effect of fluid pressure decline on volumetric changes of porous rocks[J]. Society of Petroleum Transactions, 1957, 210: 331-339.
    [24]
    陈正汉, 谢定义, 刘祖典. 非饱和土固结的混合物理论(I)[J]. 应用数学和力学, 1993, 14(2): 127-137. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX199302004.htm

    CHEN Zheng-han, XIE Ding-yi, LIU Zu-dian. Consolidation theory of unsaturated soil based on the theory of mixture(I)[J]. Applied Mathematics and Mechanics, 1993, 14(2): 127-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX199302004.htm
    [25]
    HU Ya-yuan. Isothermal hyperelastic model for saturated porous media based on poromechanics[C]//Proceedings of China-Europe Conference on Geotechnical Engineering (Volume 1), 2018, Springer.
    [26]
    胡亚元, 王超. 双应力变量的饱和多孔介质非线性体积本构关系[J]. 上海交通大学学报, 2019, 53(7): 797-804. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201907006.htm

    HU Ya-yuan, WANG chao. Nonlinear volumetric constitutive relations of saturated porous media in terms of double stress variables[J]. Journal of Shanghai Jiaotong University, 2019, 53(7): 797-804. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201907006.htm
    [27]
    LADE P V, DE Boer R. The concept of effective stress for soil, concrete and rock[J]. Géotechnique, 1997, 47(1): 61-78.
    [28]
    陈勉, 陈至达. 多重孔隙介质的有效应力定律[J]. 应用数学与物理学, 1999, 20(11): 1121-1127. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901004.htm

    CHEN Mian, CHEN Zhi-da. Effective stress laws for multi-porosity media[J]. Applied Mathematics and Mechanics, 1999, 20(11): 1121-1127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901004.htm
    [29]
    胡亚元. 双变量耦合作用对非饱和岩土波动特性的影响研究[J]. 振动与冲击, 2018, 37(10): 208-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201810030.htm

    HU Ya-yuan. Effect of double-variable coupling on the fluctuating characteristics of unsaturated rock and soil[J]. Journal of Vibration and Shock, 2018, 37(10): 208-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201810030.htm
    [30]
    赵怡晴, 刘红岩, 吕淑然, 等. 基于宏观和细观缺陷耦合的节理岩体损伤本构模型[J]. 中南大学学报, 2015, 46(4): 1489-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504041.htm

    ZHAO Yi-qing, LIU Hong-yan, LU Shu-ran, et al. Damage constitutive model of jointed rock mass based on coupling of macroscopic and meso-scopic defects[J]. Journal of Central South University, 2015, 46(4): 1489-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201504041.htm
    [31]
    曹文贵, 杨尚, 张超. 考虑弹性模量变化的岩石统计损伤本构模型[J]. 水文地质工程地质, 2017, 44(3): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703008.htm

    CAO Wen-gui, YANG Shang, ZHANG Chao. Astatistical damage constitutive model of rocks considering the variation of the elastic modulus[J]. Hydrogeology and Engineering Geology, 2017, 44(3): 42-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201703008.htm
    [32]
    杨红伟. 循环载荷作用下岩石与孔隙水耦合作用机理研究[D]. 重庆: 重庆大学, 2011.

    YANG Hong-wei. Study on Coupling Mechanism of Rock and Pore Water under Cyclic Loading[D]. Chongqing: Chongqing University, 2011. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return