• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Qing-bo, DU Peng-zhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. DOI: 10.11779/CJGE202011022
Citation: LI Qing-bo, DU Peng-zhao. Automatic RQD analysis method based on information recognition of borehole images[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2153-2160. DOI: 10.11779/CJGE202011022

Automatic RQD analysis method based on information recognition of borehole images

More Information
  • Received Date: June 17, 2020
  • Available Online: December 05, 2022
  • RQD is an important index for evaluating the integrity of rock masses. The traditional methods are greatly affected by drilling process, core quality and run length, and cannot objectively reflect the quality of rock masses. To solve this problem, An automatic RQD analysis method based on the edge threshold segmentation of borehole images is proposed. This method first performs preprocessing and edge threshold segmentation on the borehole images to achieve target screening. Then, encode the screened target area is encoded, and the connected areas are merged to determine the effective targets that affect the RQD analysis. Finally, the location and width of the structural plane and fracture zone are extracted, and the RQD of boreholes is calculated. For a case study of the Dongzhuang Dam at Jinghe River, the automatic RQD analysis is performed, and the achieved results are in good agreement with the borehole images and the coefficient of rock mass integrity. The proposed method improves the accuracy of RQD statistics, enriches the acquisition of RQD, and provides a fast and effective method for evaluating the rock mass integrity.
  • [1]
    DEERE D U. Technical description of rock cores for engineering purposes[J]. Rock Mechanics and Engineering Geology, 1963, 1(1): 18-22.
    [2]
    PALMSTROM A. Measurements of and correlations between blocksize and rock quality designation (RQD)[J]. Tunn Undergr SpaceTechnol, 2005, 20: 362-377. doi: 10.1016/j.tust.2005.01.005
    [3]
    OZTURK C A, NASUF E. Geostatistical assessment of rock zones for tunneling[J]. Tunneling and Underground Space Technology, 2002(17): 275-285.
    [4]
    王国欣, 肖树芳, 陈剑平, 等. 不连续面三维网络在RQD中的应用研究[J]. 岩石力学与工程学报, 2002, 21(12): 1761-1764. doi: 10.3321/j.issn:1000-6915.2002.12.003

    WANG Guo-xin, XIAO Shu-fang, CHEN Jian-ping, et al. Study on application of 3D network of discontinuities to RQD[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1761-1764. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.12.003
    [5]
    陈剑平, 王清, 赵红亮, 等. 窗口测线法获取岩体RQD[J]. 岩石力学与工程学报, 2004, 23(9): 1491-1495. doi: 10.3321/j.issn:1000-6915.2004.09.016

    CHEN Jian-ping, WANG Qing, ZHAO Hong-liang, et al. Obtaining RQD of rock mass by sampling window method[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1491-1495. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.09.016
    [6]
    徐伟, 胡新丽, 黄磊, 等. 结构面三维网络模拟计算RQD及精度对比研究[J]. 岩石力学与工程学报, 2012, 31(4): 822-833. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204024.htm

    XU Wei, HU Xin-li, HUANG Lei, et al. Research on RQD of rock mass calculated by three-dimensional discontinuity network simulation method and its accuracy comparison[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 822-833. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204024.htm
    [7]
    崔小平, 秦趣, 马士彬. 三维激光扫描技术获取岩体RQD值中的应用[J]. 六盘水师范高等专科学校学报, 2011, 23(3): 29-32. doi: 10.3969/j.issn.1671-055X.2011.03.007

    CUI Xiao-ping, QIN Qu, MA Shi-bin. The application of 3d laser scanning technology in rock RQD data[J]. Journal of Liupanshui Teachers College, 2011, 23(3): 29-32. (in Chinese) doi: 10.3969/j.issn.1671-055X.2011.03.007
    [8]
    KAYABASI A, YESILOGLU-GULTEKIN GOKCEOGLU C. Use of non-linear prediction tools to assess rock masspermeability using various discontinuity parameters[J]. Engineering Geology, 2015, 185(5): 1-9.
    [9]
    Azimia , Abdolazim . A New method for improving the RQD determination of rock core in borehole[J]. Rock Mechanics & Rock Engineering, 2016, 49(4): 1559-1566.
    [10]
    胡瀚. 基于数字近景摄影测量的岩体RQD获取[D]. 长春: 吉林大学, 2018.

    HU Han. Rock Mass RQD Acquisition Based on Digital Close-range Photogrammetry[D]. Changchun: Jinlin University, 2018. (in Chinese)
    [11]
    THAPA B B, HUGHETT P, KARASAKI K. Semiautomatic analysis of rock fracture orientations from borehole wall images[J]. Geophysics, 1997, 62(1): 129-137. doi: 10.1190/1.1444112
    [12]
    吴剑, 冯少孔, 李宏阶. 钻孔成像中结构面自动判读技术研究[J]. 岩土力学, 2011, 32(3): 951-957. doi: 10.3969/j.issn.1000-7598.2011.03.051

    WU Jian, FENG Shao-kong, LI Hong-jie. Study of automatically extracting structural plane parameters from borehole images[J]. Rock and Soil Mechanics, 2011, 32(3): 951-957. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.051
    [13]
    曹洋兵, 晏鄂川, 胡德新, 等. 岩体结构面产状测量的钻孔摄像技术及其可靠性[J]. 地球科学(中国地质大学学报), 2014, 39(4): 473-480. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404010.htm

    CAO Yang-bing, YAN E-chuan, HU De-xin, et al. Calculation methods of rock mass discontinuity orientation measured by borehole camera technology and technology reliability[J]. Journal of China University of Geosciences: Earth Science, 2014, 39(4): 473-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201404010.htm
    [14]
    王川婴, 邹先坚, 韩增强, 等. 基于特征函数的钻孔图像结构面识别方法[J]. 岩土力学, 2017, 38(10): 3062-3066. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710038.htm

    WANG Chuan-ying, ZOU Xian-jian, HAN Zeng-qiang, et al. Recognition of structural planes in borehole image based on characteristic function[J]. Rock and Soil Mechanics, 2017, 38(10): 3062-3066. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710038.htm
    [15]
    葛云峰, 钟鹏, 唐辉明, 等. 基于钻孔图像的岩体结构面几何信息智能测量[J]. 岩土力学, 2019, 40(11): 4467-4476. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm

    Intelligent measurement on geometric information of rock discontinuities based on borehole image[J]. Rock and Soil Mechanics, 2019, 40(11): 4467-4476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911038.htm
    [16]
    王川婴, Tim LAW K. 钻孔摄像技术的发展与现状[J]. 岩石力学与工程学报, 2005, 24(19): 3440-3448. doi: 10.3321/j.issn:1000-6915.2005.19.006

    WANG Chuan-ying, Tim LAW K. Review of borehole camera technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3440-3448. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.19.006
    [17]
    汪进超, 王川婴, 胡胜, 等. 孔壁钻孔图像的结构面参数提取方法研究[J]. 岩土力学, 2017, 38(10): 3074-3080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710040.htm

    WANG Jin-chao, WANG Chuan-ying, HU Sheng. A new method for extraction of parameters of structural surface in borehole images[J]. Rock and Soil Mechanics, 2017, 38(10): 3074-3080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710040.htm
    [18]
    赵芳, 栾晓明, 孙越. 数字图像几种边缘检测算子检测比较分析[J]. 计算机应用, 2004, 24(9): 28-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200903024.htm

    ZHAO Fang, LUAN Xiao-ming, SUN Yue. Edge detection operators in digital image processing[J]. Computer Application, 2004, 24(9): 28-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200903024.htm
  • Cited by

    Periodical cited type(16)

    1. 梁绍敏,冯云田,赵婷婷,王志华. 颗粒材料破碎行为数值分析方法研究综述. 力学学报. 2024(01): 1-22 .
    2. 陈泽亮,许萍,房凌云,林青伟,柳智龙. 考虑土石混合体“颗粒破碎-剪切参数-含水率”相关性的力学特性研究. 应用力学学报. 2024(06): 1257-1268 .
    3. 李文涛,王琛,陈翔,罗建锋,邵国卫,温仁节. 基于离散单元法的粗粒土蠕变级配演化规律. 人民长江. 2024(S2): 221-225+238 .
    4. 徐林荣,陆志强,陈昀灏,李永威,丁奎. 循环荷载作用下宕渣颗粒破碎行为及累积变形预测. 东南大学学报(自然科学版). 2023(01): 102-113 .
    5. 罗亚琼,张超,李洁,卢霖,任中俊. 土石混合体大型三轴剪切变形特性及模拟方法. 水利水电技术(中英文). 2023(05): 168-176 .
    6. 迟世春,郭宇,马锡钰,贾宇峰. 颗粒流变破碎与堆石料流变应变计算. 水力发电. 2023(10): 77-84+91 .
    7. 卿云,马爱娟,杨少博,邱珍锋,邓文杰. 考虑缩尺效应对堆石料颗粒破碎影响的压缩试验研究. 长江科学院院报. 2023(12): 126-132 .
    8. 孟敏强,肖杨,孙增春,张志超,蒋翔,刘汉龙,何想,吴焕然,史金权. 粗粒料及粒间微生物胶结的破碎-强度-能量耗散研究进展. 中国科学:技术科学. 2022(07): 999-1021 .
    9. 常洲,张留俊,黄平明,晏长根,贾卓龙,徐合清. 炭质页岩的颗粒破碎及其路用性能试验研究. 岩土力学. 2022(11): 3117-3126 .
    10. 杜俊,侯克鹏,程涌,李晨晨. 高台阶排土场粒径分布特征与抗剪强度特性. 矿冶工程. 2022(06): 29-33+39 .
    11. 乔世范,刘屹颀,徐平. 超大粒径块石填料路用工程特性现场试验研究. 铁道科学与工程学报. 2022(12): 3645-3654 .
    12. 钱财富,王佩,徐海波,周文渊. 粗粒料填筑地基关键参数试验研究. 江淮水利科技. 2022(06): 4-6+22 .
    13. 张榜,丰浩然,吴灿,陈坤,陈雪嘉,张鸿. 颗粒破碎对岩土体宏观力学性能影响的细观机理分析. 南昌工程学院学报. 2021(01): 40-44 .
    14. 毛永强,陈世豪,袁青,王琳,熊齐欢. P_5含量对路基粗粒土动力特性影响规律试验研究. 中外公路. 2021(04): 301-306 .
    15. 马奎,朱俊高,龚选. 堆石料直剪试验与三轴试验强度对比分析. 河南科学. 2021(09): 1440-1444 .
    16. 雷晓丹,杨忠平,翟航,胡元鑫. 土石混合体块石破碎影响因素的颗粒流数值研究. 工程地质学报. 2020(06): 1193-1204 .

    Other cited types(22)

Catalog

    Article views (363) PDF downloads (179) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return