• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Bu-yun, CHEN Jun-tao, XIAO Ming. Seismic response and damage mechanism of lining structures for underground tunnels across fault[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2078-2087. DOI: 10.11779/CJGE202011013
Citation: YANG Bu-yun, CHEN Jun-tao, XIAO Ming. Seismic response and damage mechanism of lining structures for underground tunnels across fault[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2078-2087. DOI: 10.11779/CJGE202011013

Seismic response and damage mechanism of lining structures for underground tunnels across fault

More Information
  • Received Date: November 11, 2019
  • Available Online: December 05, 2022
  • According to the dynamic interaction characteristics of lining and surrounding rock, a dynamic contact force method considering the discontinuous deformation between linings and surrounding rock is established. This method is used to calculate the antiseimic stability of an underground tunnel across fault in Lawa Hydropower Station project. Firstly, the influences of fault thickness and dip angle on the stress and displacement of tunnel linings under earthquake are investigated. Then, the influences of contact and fault on the seismic response and damage characteristics of the linings are investigated. The numerical results indicate that the existence of fault aggravates the seismic reaction of the linings, which shows that the stress and displacement of the linings at the fault are greater than those at other positions. The difference of fault thickness and dip angle has a significant influence on the seismic response of the linings at the fault. The seismic response of the linings increases with the decrease of the fault thickness, and the seismic response of the linings is the largest when the dip angle is 45°. The restraint effect of surrounding rock on the linings can effectively reduce their damage. The damage of linings at fault is more serious than that at other parts, and arch shoulders and arch abutments are the weak parts of the tunnel. Three typical damage patterns of the linings at fault are deduced from the simulated results and can be reasonably explicated by the corresponding damage mechanisms.
  • [1]
    YANG Z, LAN H, ZHANG Y, et al. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event[J]. Journal of Asian Earth Sciences, 2013, 64: 125-135. doi: 10.1016/j.jseaes.2012.12.006
    [2]
    YU H, CHEN J, BOBET A, et al. Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake[J]. Tunnelling and Underground Space Technology, 2016, 54: 102-116. doi: 10.1016/j.tust.2016.02.008
    [3]
    HUANG J, ZHAO M, DU X. Non-linear seismic responses of tunnels within normal fault ground under obliquely incident P waves[J]. Tunnelling and Underground Space Technology, 2017, 61: 26-39. doi: 10.1016/j.tust.2016.09.006
    [4]
    耿萍, 吴川, 唐金良, 等. 穿越断层破碎带隧道动力响应特性分析[J]. 岩石力学与工程学报, 2012, 31(7): 1406-1413. doi: 10.3969/j.issn.1000-6915.2012.07.013

    GENG Ping, WU Chuan, TANG Jin-liang, et al. Analysis of dynamic response properties for tunnel through fault fracture zone[J]. Chinese Journal of Geotechnical Engineering, 2012, 31(7): 1406-1413. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.07.013
    [5]
    WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133-150. doi: 10.1016/S0886-7798(01)00047-5
    [6]
    钱七虎, 何川, 晏启象. 隧道工程动力响应特性与汶川地震隧道震害分析及启示[M]//汶川大地震工程震害调查分析与研究. 北京: 科学出版社, 2009: 773-778.
    [7]
    陈海亮, 高明忠, 汪文勇, 等. 跨断层隧道衬砌变形规律及损伤机理研究[J]. 工程科学与技术, 2018, 50(5): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805005.htm

    CHEN Hai-liang, GAO Ming-zhong, WANG Wen-yong, et al. Study on the deformation law and damage mechanism of cross fault tunnel lining[J]. Advanced Engineering Sciences, 2018, 50(5): 38-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805005.htm
    [8]
    刘学增, 王煦霖, 林亮伦. 45°倾角正断层黏滑错动对隧道影响试验分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Modeling experiment on effect of normal fault with 45° dig angle stick-slip dislocation on tunnel[J]. Journal of Tongji University (Natural Science), 2014, 42(1): 44-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201401009.htm
    [9]
    刘学增, 王煦霖, 林亮伦. 60°倾角正断层黏滑错动对山岭隧道影响的试验研究[J]. 土木工程学报, 2014, 47(2): 121-128.

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel[J]. China Civil Engineering Journal, 2014, 47(2): 121-128. (in Chinese)
    [10]
    刘学增, 王煦霖, 林亮伦. 75°倾角正断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2013, 32(8): 1714-1720. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm

    LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75° dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rcok Mechanics and Engineering, 2013, 32(8): 1714-1720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201308026.htm
    [11]
    李林, 何川, 耿萍, 等. 隧道穿越高烈度地震区断层带围岩地震响应分析[J]. 重庆大学学报, 2012, 35(6): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201206016.htm

    LI Lin, HE Chuan, GENG Ping, et al. Analysis of seismic dynamic responses of tunnel through fault zone in high earthquake intensity area[J]. Journal of Chongqing University, 2012, 35(6): 92-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201206016.htm
    [12]
    王峥峥. 跨断层隧道结构分线性地震损伤反应分析[D]. 成都: 西南交通大学, 2009: 131-136.

    WANG Zheng-zheng. Nonlinear Seismic Damage Response of Tunnel Structure Across Fault[D]. Chengdu: Southwest Jiaotong University, 2009: 131-136. (in Chinese)
    [13]
    刘国庆, 肖明, 杨阳, 等. 跨断层水工隧洞地震响应数值模拟分析方法[J]. 湖南大学学报(自然科学版), 2018, 45(11): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201811018.htm

    LIU Guo-qing, XIAO Ming, YANG Yang, et al. Analysis of seismic damage evolving process of underground powerhouse concrete structure using on dynamic contact force method[J]. Journal of Hunan University (Natural Science Edition), 2018, 45(11): 140-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201811018.htm
    [14]
    王小威. 大型复杂地下洞室地震响应分析及损伤机理研究[D]. 武汉: 武汉大学, 2019: 88-92.

    WANG Xiao-wei. Research on seismic response and damage mechanism for large complx underground caverns[D]. Wuhan: Wuhan University, 2019: 88-92. (in Chinese)
    [15]
    SHAHIDI A R, VAFAEIAN M. Analysis of longitudinal profile of the tunnels in the active faulted zone and designing the flexible lining (for Koohrang-III tunnel)[J]. Tunnelling and Underground Space Technology, 2005, 20(3): 213-221.
    [16]
    WANG S Y, SUN L, YANG C, et al. Numerical study on static and dynamic fracture evolution around rock cavities[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5(4): 262-276.
    [17]
    LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900.
    [18]
    葛修润, 蒋宇, 卢允德, 等. 周期荷载作用下岩石疲劳变形特性试验研究[J]. 岩石力学与工程学报, 2003, 22(10): 1581-1585. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200310000.htm

    GE Xiu-run, JIANG Yu, LU Yun-de, et al. Testing study on fatigue deformation law of rock under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(10): 1581-1585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200310000.htm
    [19]
    WU J Y, LI J, FARIA R. An energy release rate-based plastic-damage model for concrete[J]. International Journal of Solids and Structures, 2006, 43: 583-612.
    [20]
    赵宝友, 马震岳, 梁冰, 等. 基于损伤塑性模型的地下洞室结构地震作用分析[J]. 岩土力学, 2009, 30(5): 1515-1521. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905064.htm

    ZHAO Bao-you, MA Zhen-yue, LIANG Bin, et al. Seismic analysis of underground structures based on damaged plasticity model[J]. Rock and Soil Mechanics, 2009, 30(5): 1515-1521. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200905064.htm
    [21]
    BIRTEL V, MARK P. Parameterised finite element modelling of RC beam shear failure[C]//ABAQUS Users' Conference, 2006, Bochum.
    [22]
    LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
    [23]
    LIU S, LIU J B, SUN J G, et al. A method for analyzing three-dimensional dynamic contact problems in visco-elastic media with kinetic and static friction[J]. Computers and Structures, 2003, 81: 2383-2394.
    [24]
    WANG X W, CHEN J T, XIAO M, et al. Seismic response analysis of concrete lining structure in large underground powerhouse[J]. Mathematical Problems in Engineering, 2017: 1-14. doi: 10.1155/2017/4106970.
    [25]
    WANG X W, CHEN J T, XIAO M. Seismic responses of an underground powerhouse structure subjected to oblique incidence SV and P waves[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 130-143.
    [26]
    赵健, 肖明, 陈俊涛, 等. 基于单元重构与节点分离的大型地下洞室软弱结构面模拟方法[J]. 湖南大学学报(自然科学版), 2017, 44(3): 134-142. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201703017.htm

    ZHAO Jian, XIAO Ming, CHEN Jun-tao, et al. Simulation methodology of weak structural planes in large underground chamber based on element reconstruction and node separation[J]. Journal of Hunan University (Natural Sciences), 2017, 44(3): 134-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201703017.htm
    [27]
    LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 1969, 95(4): 859-878.
    [28]
    张志国. 地下洞室群地震响应数值分析方法研究[D]. 武汉: 武汉大学, 2012.

    ZHANG Zhi-guo. Study on Numerical Simulation Methods for Seismic Response of Underground Cavern Complexes[D]. Wuhan: Wuhan University, 2012. (in Chinese)
    [29]
    DENG J, XIAO M. Dynamic response analysis of concrete lining structure in high pressure diversion tunnel under seismic load[J]. Journal of Vibroengineering, 2016, 18(2): 1016-1030.
    [30]
    WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133-150.
    [31]
    WANG Z Z, ZHANG Z. Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2013, 45: 45-55.
    [32]
    YASHIRO K, KOJIMA Y, SHIMIZU M. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake[J]. Quarterly Report of RTRI, 2007, 48(3): 136-141.

Catalog

    Article views (298) PDF downloads (177) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return