• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Min, GAO Yu-feng, HE Jia, LIU Yang. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. DOI: 10.11779/CJGE202010017
Citation: WU Min, GAO Yu-feng, HE Jia, LIU Yang. Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1914-1921. DOI: 10.11779/CJGE202010017

Laboratory study on use of soybean urease-induced calcium carbonate precipitation with xanthan gum for stabilization of desert sand against wind erosion

More Information
  • Received Date: January 14, 2020
  • Available Online: December 07, 2022
  • The technology of soybean urease-induced calcium carbonate precipitation (SICP) is a new environmentally-friendly soil improvement technology. Xanthan gum can also be used as a soil cementation material. This study combines the technology of soybean urease-induced calcium carbonate precipitation and xanthan gum to optimize the former. It is found that the xanthan gum can further improve the surface strength of SCIP-improved sand. The surface strength increases with the increase of the concentration of soybean urease and xanthan gum. The wind erosion tests are carried out on the sand samples with different treatment levels using pure wind and wind mixed with solid particles. The samples treated only by SICP technology have relatively strong resistance to wind sand erosion. The addition of xanthan gum further improves their resistance by showing a lower erosion rate of the samples. In addition, the results indicate that in the wind erosion tests, the presence of solid particles have a strong erosion effect on the deterioration of the sand surface. The erosion rate (mass loss %) of the samples with the lowest strength is only 3.8% under the wind of 15 m/s and 1 h in the tests with pure wind, while under the same condition, the erosion rate is 66.7% in the tests using wind mixed solid particles. It is also found that there is a strong positive correlation between the wind erosion resistance and the surface strength of the treated soil. The microstructure of the treated sand samples is investigated by the SEM. It is observed that the cementation between the calcium carbonate and the soil particles becomes stronger due to the binding and the hardening effects of the xanthan gum.
  • [1]
    王涛, 朱震达. 中国沙漠化研究的若干问题——1.沙漠化的概念及其内涵[J]. 中国沙漠, 2003(3): 3-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200303001.htm

    WANG Tao, ZHU Zhen-da. Some problems in the study of desertification in China——1. The concept and connotation of desertification[J]. Journal of Desert Research, 2003(3): 3-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200303001.htm
    [2]
    国家林业局. 中国荒漠化和沙化状况公报[R]. 国家林业局, 2015.

    State Forestry Administration. A Bulletin of Status quo of Desertification and Sandification in China[R]. State Forestry Administration, 2015. (in Chinese)
    [3]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
    [4]
    DE MUYNCK W, DE BELIE N, VERSTRAETE W. Microbial carbonate precipitation in construction materials: a review[J]. Ecological Engineering, 2010, 36(2): 118-136. doi: 10.1016/j.ecoleng.2009.02.006
    [5]
    HAMDAN N, KAVAZANJIAN E J. Enzyme-induced carbonate mineral precipitation for fugitive dust control[J]. Géotechnique, 2016, 66(7): 1-10.
    [6]
    HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecological Engineering, 2010, 36(2): 112-117. doi: 10.1016/j.ecoleng.2009.01.004
    [7]
    PUTRA H, YASUHARA H, KINOSHITA N, et al. Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique[J]. Frontiers in Bioengineering and Biotechnology, 2016, 4: 37.
    [8]
    PARK S S, CHOI S G, NAM I H. Effect of plant-induced calcite precipitation on the strength of sand[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 06014017. doi: 10.1061/(ASCE)MT.1943-5533.0001029
    [9]
    KHAN M N H, AMARAKOON G G N N. Coral sand solidification test based on microbially induced carbonate precipitation using ureolytic bacteria[J]. Materials Transactions, 2015, 56(10): 1725-1732. doi: 10.2320/matertrans.M-M2015820
    [10]
    DAS N, KAYASTHA A M, SRIVASTAVA P K. Purification and characterization of urease from dehusked pigeonpea (Cajanus cajan L) seeds[J]. Phytochemistry, 2002, 61(5): 513-521. doi: 10.1016/S0031-9422(02)00270-4
    [11]
    GAO Y F, HE J, TANG X Y, et al. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil[J]. Soils and Foundations, 2019, 59(5): 1631-1637. doi: 10.1016/j.sandf.2019.03.014
    [12]
    周盛华, 黄龙, 张洪斌. 黄原胶结构、性能及其应用的研究[J]. 食品科技, 2008(7): 156-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ200807059.htm

    ZHOU Sheng-hua, HUANG Long, ZHANG Hong-bin. Development on the structure, property and application of xanthan gum[J]. Food Science and Technology, 2008(7): 156-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ200807059.htm
    [13]
    LEE S, CHANG I, CHUNG M K, et al. Geotechnical shear behavior of Xanthan gum biopolymer treated sand from direct shear testing[J]. Geomechanics and Engineering, 2017, 12(5): 831-847. doi: 10.12989/gae.2017.12.5.831
    [14]
    TUCKER K S, TRAN T, WANG X R, et al. Surficial soil stabilization against water-Induced erosion using polymer-modified microbially induced carbonate precipitation[J]. Journal of Materials in Civil Engineering, 2018, 30(10): 04018267. doi: 10.1061/(ASCE)MT.1943-5533.0002490
    [15]
    HAMDAN N, ZHAO Z, MUJICA M, et al. Hydrogel-assisted enzyme-induced carbonate mineral precipitation[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089. doi: 10.1061/(ASCE)MT.1943-5533.0001604
    [16]
    CHEN R, LEE I, ZHANG L. Biopolymer stabilization of mine tailings for dust control[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 141(2): 04014100.
    [17]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth West Australia: Morduch University, 2004.
    [18]
    水质钙的测定EDTA滴定法:GB/T 7476—1987[S]. 1987.

    Water Quality—Determination of Calcium—EDTA Titrimetric Method: GB/T 7476—1987[S]. 1987. (in Chinese)
    [19]
    王礼先, 朱金兆. 水土保持学[M]. 2版.北京: 中国林业出版社, 2005.

    WANG Li-xian, ZHU Jin-zhao. Soil and Water Conservation[M]. 2nd ed. Beijing: China Forestry Publishing House, 2005. (in Chinese)
    [20]
    张春来, 宋长青, 王振亭, 等. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201801004.htm

    ZHANG Chun-lai, SONG Chang-qing, WANG Zhen-ting, et al. Review and prospect of the study on soil wind erosion process[J]. Advances in Earth Science, 2018, 33(1): 27-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201801004.htm
    [21]
    程旭. 风沙两相流中沙粒起动规律的实验研究[D]. 北京: 清华大学, 2003.

    CHENG Xu. Experimental Research on Sand Incipience Law in Wind-Blown-Sand Two Phase Flow[D]. Beijing: Tsinghua University, 2003. (in Chinese)
  • Cited by

    Periodical cited type(8)

    1. 孙银磊,余川,廖磊,李志妃. 钢渣粉固化改良膨胀性黏土机理研究进展. 水文地质工程地质. 2025(01): 113-129 .
    2. 陈宏信,牛松荧,冯世进,薛钦培,李正霏,石福江. 聚丙烯酸钠改性钙基膨润土工程特性及微观结构研究. 岩土工程学报. 2025(04): 860-868 . 本站查看
    3. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液化学作用机制研究进展. 岩土工程学报. 2025(05): 1089-1098 . 本站查看
    4. 朱宝龙,任龙. 考虑温度影响的岩石三向膨胀力测量仪及其实验设计. 实验科学与技术. 2024(01): 9-15 .
    5. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    6. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 . 本站查看
    7. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
    8. 周锐,王保田,王东英,王斯杰,张福海. 不同干湿条件下中等膨胀土裂隙发展及作用机理分析. 农业工程学报. 2023(21): 98-107 .

    Other cited types(5)

Catalog

    Article views (439) PDF downloads (205) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return