• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Teng, HE Jia-long, LIU Jin-kun. Influences of friction fatigue effects of conductor-soil interface on penetration resistance of conductor of wellhead in deep water[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1532-1539. DOI: 10.11779/CJGE202008019
Citation: WANG Teng, HE Jia-long, LIU Jin-kun. Influences of friction fatigue effects of conductor-soil interface on penetration resistance of conductor of wellhead in deep water[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1532-1539. DOI: 10.11779/CJGE202008019

Influences of friction fatigue effects of conductor-soil interface on penetration resistance of conductor of wellhead in deep water

More Information
  • Received Date: September 09, 2019
  • Available Online: December 05, 2022
  • The penetration resistance of deep-water conductor in clay is closely related to the friction fatigue at the conductor-soil interface. The shear stress at the conductor-soil interface decreases because of the friction fatigue caused by the installation of conductor. The penetration process of the conductor is simulated by using the arbitrary Lagrange-Euler method (ALE) in ABAQUS. The friction fatigue effects of the adhesive contact interface between the conductor and the soil is simulated by using the VUSDFLD and VFRIC subroutines. The influences of friction fatigue on penetration resistance of the conductor and the fundamental principles of reciprocation in homogeneous clay and heterogeneous clay are studied. The results show that the cohesion coefficient at the conductor-soil interface gradually decreases with the penetration and approaches the inverse of the soil sensitivity due to the friction fatigue effects, resulting in a reduction in the unit shaft resistance. The total penetration resistance of the conductor in homogeneous clay and heterogeneous clay decreases by 42.60% and 28.48%, respectively at the end of penetration. The reciprocation of the conductor increases the "cumulative shear displacement" of soil, which inflicts significant fatigue damage to the soil at the conductor-soil interface, and the penetration resistance of the conductor decreases, so that the "stuck" conduction can continue to penetrate into the design depth.
  • [1]
    AKERS T J. Jetting of structural casing in deepwater environments: job design & operational practices[J]. SPE Drilling and Completion, 2018, 23(1): 29-40.
    [2]
    王腾, 孙宝江. 深水喷射井口结构套管水平承载力[J]. 中国石油大学学报(自然科学版), 2008, 32(5): 50-53. doi: 10.3321/j.issn:1673-5005.2008.05.010

    WANG Teng, SUN Bao-jiang. Lateral bearing capacity of jetting structural casing of wellhead in deepwater[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(5): 50-53. (in Chinese) doi: 10.3321/j.issn:1673-5005.2008.05.010
    [3]
    唐海雄, 罗俊丰, 叶吉华, 等. 南海超深水喷射钻井导管入泥深度设计方法[J]. 石油天然气学报, 2011, 33(3): 147-151. doi: 10.3969/j.issn.1000-9752.2011.03.034

    TANG Hai-xiong, LUO Jun-feng, YE Ji-hua, et al. Method of design of conductor setting depth for ultra-deepwater jetting drilling in South China Sea[J]. Journal of Oil and Gas Technology, 2011, 33(3): 147-151. (in Chinese) doi: 10.3969/j.issn.1000-9752.2011.03.034
    [4]
    RANDOLPH M F. Science and empiricism in pile foundation design[J]. Géotechnique, 2003, 53(10): 847-875. doi: 10.1680/geot.2003.53.10.847
    [5]
    WHITE D J, LEHANE B M. Friction fatigue on displacement piles in sand[J]. Géotechnique, 2004, 54(10): 645-658.
    [6]
    GAVIN K G, KELLY O, BRENDAN C. Effect of friction fatigue on pile capacity in dense sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 63-71. doi: 10.1061/(ASCE)1090-0241(2007)133:1(63)
    [7]
    GAVIN K, GALLAGHER D, DOHERTY P, et al. Field investigation of the effect of installation method on the shaft resistance of piles in clay[J]. Canadian Geotechnical Journal, 2010, 47(7): 730-741.
    [8]
    刘俊伟, 张明义, 赵洪福, 等. 基于球孔扩张理论和侧阻力退化效应的压桩力计算模拟[J]. 岩土力学, 2009, 30(4): 1181-1185. doi: 10.3969/j.issn.1000-7598.2009.04.056

    LIU Jun-wei, ZHANG Ming-yi, ZHAO Hong-fu, et al. Computational simulation of jacking force based on spherical cavity expansion theory and friction fatigue effect[J]. Rock and Soil Mechanics. 2009, 30(4): 1181-1185. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.04.056
    [9]
    黄生根, 龚维明. 桩端压浆对超长大直径桩侧阻力的影响研究[J]. 岩土力学, 2006, 27(5): 711-716. doi: 10.3969/j.issn.1000-7598.2006.05.006

    HUANG Sheng-gen, GONG Wei-ming. Study on effect of base grouting on shaft friction of overlength large diameter pile[J]. Rock and Soil Mechanics, 2006, 27(5): 711-716. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.05.006
    [10]
    张忠苗, 刘俊伟, 俞峰, 等. 静压管桩终压力与极限承载力的相关关系研究[J]. 岩土工程学报, 2010, 32(8): 1207-1213. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201008014.htm

    ZHANG Zhong-miao, LIU Jun-wei, YU Feng, et al. Relationship between terminative jacking force and ultimate bearing capacity of jacked pipe piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1207-1213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201008014.htm
    [11]
    KVALSTAD T J, NADIM F, HARBITZ C B. Deepwater geohazards. Geotechnical concerns and solutions[C]//Proc, Offshore Technology Conf, Offshore Technology Conference, 2001, Houston.
    [12]
    ZHOU H, RANDOLPH M F. Resistance of full-flow penetrometers in rate-dependent and strain-softening clay[J]. Géotechnique, 2009, 59(2): 79-86.
    [13]
    KIM Y H, HOSSAIN M S. Numerical study on pull-out capacity of torpedo anchors in clay[J]. Geotech Lett, 2016, 6(4): 1-8.
    [14]
    BECK R D, JACKSON C W, HAMILTON T K. Reliable deep-water structural casing installation using controlled jet-ting[C]//Annual Technical Conference and Exhibition, Society of Petroleum, 1991, Texas: 75-84.
    [15]
    WHITTLE A J, SUTABURT T. Parameters for average gulf clay and prediction of pile set-up in the gulf of mexico[C]//ASCE Conference Proceedings, 2005, Texas: 440-458.
    [16]
    API RP 2A-WSD. API Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms- Working Stress Design (21st)[S]. Washington D C: American Petroleum Institute, 2005.
    [17]
    LYMON C R, WANG S T, JOSE A, et al. A Program for the Study of Driven Piles under Axial Loads[M]. Austin: Howard Lane, 2015: 110-130.
    [18]
    WANG T, LIU W L, WU R, et al. Simulation of T-bar penetration in soft clay with adhesive contact[J]. Marine Georesources and Geotechnolog, 2019(1): 1-10.
    [19]
    COOKE R W, PRICE G, TARR K. Jacked piles in London clay: a study of load transfer and settlement under working conditions[J]. Géotechnique, 1979, 29(2): 113-147.
    [20]
    DOHERTY P, GAVIN K. The shaft capacity of displacement piles in clay: a state of the art review[J]. Geotechnical and Geological Engineering, 2011, 29(4): 389-410. doi: 10.1007/s10706-010-9389-2
    [21]
    KONKOL J, BALACHOWSKI L. Large deformation finite element analysis of undrained pile installation[J]. Studia Geotechnica et Mechanica, 2016, 38(1): 45-54. doi: 10.1515/sgem-2016-0005
    [22]
    WALKER J, YU H S. Adaptive finite element analysis of cone penetration in clay[J]. Acta Geotechnica, 2006, 1(1): 43-57. doi: 10.1007/s11440-006-0005-9
    [23]
    魏欢. 锚杆静压桩在既有建筑物地下加层工程中的应用研究[D]. 南京: 南京航空航天大学, 2012: 30-31.

    WEI Huan. Study on the Application of Anchor Jacked Pile in the Basement Addition of Existing Buildings[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 30-31. (in Chinese)
    [24]
    徐荣强, 陈建兵, 刘正礼, 等. 喷射导管技术在深水钻井作业中的应用[J]. 石油钻探技术, 2007(3): 19-22. doi: 10.3969/j.issn.1001-0890.2007.03.006

    XU Rong-qiang, CHEN Jian-bing, LIU Zheng-li, et al. The application of jetting technology in deepwater drilling[J]. Petroleum Drilling Techniques, 2007(3): 19-22. (in Chinese) doi: 10.3969/j.issn.1001-0890.2007.03.006
    [25]
    刘和兴, 方满宗, 刘智勤, 等. 南海西部陵水区块超深水井喷射下导管技术[J]. 石油钻探技术, 2017, 45(1): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201701002.htm

    LIU He-xing, FANG Man-zong, LIU Zhi-qin, et al. Jetting-based conductor running technology used in ultra-deep water well of Lingshui Block in the Western South China Sea[J]. Petroleum Drilling Techniques, 2017, 45(1): 10-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201701002.htm
    [26]
    ZAKERI A, LIEDTKE E, CLUKEY E C, et al. Long-term axial capacity of deepwater jetted piles[J]. Géotechnique, 2014, 64(12): 966-980. doi: 10.1680/geot.14.P.014
    [27]
    周建良. 深水表层导管喷射钻进过程中钻井液排量优化研究[J]. 中国海上油气, 2012, 24(4): 50-52. doi: 10.3969/j.issn.1673-1506.2012.04.010

    ZHOU Jian-liang. Research on the optimization of delivery capacity during jetting drilling of surface conduct in deep water[J]. China Offshore Oil and Gas, 2012, 24(4): 50-52. (in Chinese) doi: 10.3969/j.issn.1673-1506.2012.04.010
    [28]
    ALAWNEHl A S, NUSIER O K, AL-KATEEB M. Dependency of unit shaft resistance onin-situstress: Observations derived from collected field data[J]. Geotechnical and Geological Engineering, 2003, 21(1): 29-46.
    [29]
    蒋建平, 高广运, 章杨松. 基于现场试验的桩身总侧阻力达到极限后的退化[J]. 岩石力学与工程学报, 2008, 27(3): 633-633. doi: 10.3321/j.issn:1000-6915.2008.03.026

    JIANG Jian-ping, GAO Guang-yun, ZHANG Yang-song. Degradation of pile total skin friction after reaching ultimate state based of field test[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 633-633. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.03.026
    [30]
    JEANJEAN P. Innovative design method for deep—water surface casings[C]//SPE Annual Technical Conferece and Exhibition, Society of Petroleum Engineers, 2002, Texas: 1-14.
    [31]
    WANG T, LIU W L. Development of cyclic p-y curves for laterally loaded pile based on T-bar penetration tests in clay[J]. Canadian Geotechnical Journal, 2016, 53(10): 1731-1741.
  • Cited by

    Periodical cited type(5)

    1. 晏静,吴道勇,吴诗雨. 基于数字图像处理的盐溶液过饱和比与结晶压力测量方法. 硅酸盐通报. 2023(03): 1081-1085 .
    2. 万旭升,谭冬雪,路建国,晏忠瑞,何佑彪,钟闻华. 低温盐侵蚀环境下砂浆孔隙水相变特性研究. 冰川冻土. 2022(02): 545-554 .
    3. 应赛,周凤玺,文桃,曹亚鹏. 盐渍土冻结过程中的特征温度研究. 岩土工程学报. 2021(01): 53-61 . 本站查看
    4. 王策,沐方元,刘东浩,马金铭,吉植强. 硫酸盐渍土盐胀结晶试验研究进展. 低温建筑技术. 2021(11): 120-124 .
    5. 吴松波,万旭升,杨婷婷,颜梦宇,刘力,钟昌茂. 混合侵蚀和冻融循环条件下混凝土力学机制试验研究. 南京理工大学学报. 2020(04): 493-500 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return