• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
BAI Xiao-yu, ZHENG Chen, ZHANG Ming-yi, WANG Yong-hong, WANG Hai-gang. Creep tests and standard linear solid model for large-diameter glass fiber-reinforced polymer anti-floating anchors[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1304-1311. DOI: 10.11779/CJGE202007014
Citation: BAI Xiao-yu, ZHENG Chen, ZHANG Ming-yi, WANG Yong-hong, WANG Hai-gang. Creep tests and standard linear solid model for large-diameter glass fiber-reinforced polymer anti-floating anchors[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1304-1311. DOI: 10.11779/CJGE202007014

Creep tests and standard linear solid model for large-diameter glass fiber-reinforced polymer anti-floating anchors

More Information
  • Received Date: October 27, 2019
  • Available Online: December 05, 2022
  • With the advancement of science and technology and the concept of green environmental protection, China's construction industry is gradually moving towards green and sustainable buildings. The application of glass fiber-reinforced polymer (GFRP) anchor rods instead of the traditional steel anchor rods and underground anti-floating engineering can not only save the engineering cost effectively, but also extend the service life of anti-floating structures and prevent the pollution of corrosion steel bars to underground environment. In order to further explore the changes of mechanical properties of large-diameter GFRP anti-floating bolts under long-term stress, an indoor full-scale test on GFRP anti-floating bolts is conducted by applying long-term loads. The test results show that the test bolt does not creep until 38%~45% of its failure load is applied. Through the standard linear solid model, the creep law of GFRP anti-floating bolts is investigated. The model fits the stiffness versus time curve, and the fitted curve agrees well with the measured one. Furthermore, the combination of damage mechanics theory and creep model is used to derive the uplift capacity of GFRP anti-floating anchors, and the accurate prediction of long-term bearing capacity of GFRP anti-floating anchors is realized, which provides a theoretical basis for the application of GFRP anchors in anti-floating engineering.
  • [1]
    白晓宇, 张明义, 朱磊, 等. 全长黏结GFRP抗浮锚杆界面剪切特性试验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1407-1418. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806009.htm

    BAI Xiao-yu, ZHANG Ming-yi, ZHU Lei, et al. Experimental study on shear characteristics of interface of full-bonding glass fiber reinforced polymer anti-floating anchors[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1407-1418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201806009.htm
    [2]
    YAN F, LIN Z. Bond durability assessment and long-term degradation prediction for GFRP bars to fiber-reinforced concrete under saline solutions[J]. Composite Structures, 2017, 55(11): 393-406.
    [3]
    白晓宇, 张明义, 王永洪, 等. GFRP抗浮锚杆与混凝土底板黏结特性现场试验[J]. 中国矿业大学学报, 2020, 49(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001011.htm

    BAI Xiao-yu, ZHANG Ming-yi, WANG Yong-hong, et al. Field test on bond strength between glass fiber reinforcement polymer anti-floating anchor and concrete floor[J]. Journal of China University of Mining & Technology, 2020, 49(1): 93-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001011.htm
    [4]
    匡政, 张明义, 白晓宇, 等. 风化岩地基GFRP抗浮锚杆力学与变形特性现场试验[J]. 岩土工程学报, 2019, 41(10): 1882-1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910014.htm

    KUANG Zheng, ZHANG Ming-yi, BAI Xiao-yu, et al. Field tests on mechanics and deformation properties of GFRP anti-floating anchors in decomposed rock foundation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1882-1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201910014.htm
    [5]
    曾宪明, 雷志梁, 张文巾, 等. 关于锚杆“定时炸弹”问题的讨论[J]. 岩石力学与工程学报, 2001, 22(1): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200201030.htm

    ZENG Xian-ming, LEI Zhi-liang, ZHANG Wen-jin, et al. Discussion on the issue of anchor "time bomb"[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 22(1): 143-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200201030.htm
    [6]
    李国维, 余亮, 吴玉财, 等. 预应力喷砂玻璃纤维聚合物锚杆的黏结损伤[J]. 岩石力学与工程学报, 2014, 33(8): 1711-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408024.htm

    LI Guo-wei, YU Liang, WU Yu-cai, et al. Bond damage of prestressed sand-coated glass fiber reinforced polymer anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1711-1719. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201408024.htm
    [7]
    VILANOVA I, BAENA M, TORRES L, et al. Experimental study of bond-slip of GFRP bars in concrete under sustained loads[J]. Composites Part B: Engineering, 2015, 74: 42-52.
    [8]
    高丹盈, 房栋, 谷泓学. GFRP-钢绞线复合筋与混凝土黏结机理及强度计算模型[J]. 建筑结构学报, 2018, 39(4): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201804015.htm

    GAO Dao-ying, FANG Dong, GU Hong-xue. Bonding mechanism and strength calculation model of GFRP-steel composite rebars embedded in concrete[J]. Journal of Building Structures, 2018, 39(4): 130-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201804015.htm
    [9]
    YOO D Y, KWON K Y, PARK J J. Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete[J]. Composite Structures, 2015, 120: 53-64.
    [10]
    GONILHA J A, CORREIA J R, BRANCO F A. Creep response of GFRP–concrete hybrid structures: application to a footbridge prototype[J]. Composites Part B: Engineering, 2013, 53: 193-206.
    [11]
    LI G W, PEI H F, HONG C Y. Study on the stress relaxation behavior of large diameter B-GFRP bars using FBG sensing technology[J]. International Journal of Distributed Sensor Networks, 2013, 9(10): 1-12.
    [12]
    VILANOVA I, BAENA M, TORRES L, et al. Experimental study of bond-slip of GFRP bars in concrete under sustained loads[J]. Composites Part B: Engineering, 2015, 74(1): 42-52.
    [13]
    白晓宇, 张明义, 张舜泉. 全长黏结螺纹玻璃纤维增强聚合物抗浮锚杆蠕变试验研究[J]. 岩石力学与工程学报, 2015, 34(4): 804-813. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504018.htm

    BAI Xiao-yu, ZHANG Ming-yi, ZHANG Shun-quan. Creep testing on anti-floating anchors of full-length bonding thread glass fiber reinforced polymer(GFRP)[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 804-813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504018.htm
    [14]
    ROSSINI M, NANNI A. Composite strands for prestressed concrete: state-of-the-practice and experimental investigation into mild prestressing with GFRP[J]. Construction and Building Materials, 2019, 205: 486-498.
    [15]
    马明. CFRP加固钢筋混凝土梁长期力学特性研究[D]. 成都: 西南交通大学, 2017.

    MA Ming. Study on Long-Time Behavior of RC Beams Strengthened with Externally Bonded CFRP[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
    [16]
    许宏发, 陈新万. 多项式回归间接求解岩石流变力学参数的方法[J]. 有色金属, 1994, 46(4): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS404.003.htm

    XU Hong-fa, CHEN Xin-wan. Method to find indirectly solution of rock rheology's parameters with polynomial regression[J]. China Nonferrous Metals, 1994, 46(4): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS404.003.htm
    [17]
    许宏发, 卢红标, 钱七虎. 土层灌浆锚杆的蠕变损伤特性研究[J]. 岩土工程学报, 2002, 24(1): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201013.htm

    XU Hong-fa, LU Hong-biao, QIAN Qi-hu. Creep damage effects of pulling grouting anchor in soil[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 61-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200201013.htm
  • Cited by

    Periodical cited type(18)

    1. 周顺华,张克平,张小会,张权,裴政川,赵旭伟. 内钢圈加固盾构隧道黏结界面力学性能. 同济大学学报(自然科学版). 2025(02): 177-186 .
    2. 刘洋洋,魏纲,木志远,徐天宝,项鹏飞. 高强砂浆钢筋网加固掉块后盾构管片研究. 低温建筑技术. 2025(02): 56-61 .
    3. 方腾卫,杨孟,张建伟,陈磊,曹克磊. TBM引水隧洞组合结构联合承载特性及荷载分担率研究. 广东水利水电. 2024(01): 31-38 .
    4. 胡梦豪,石钰锋,蒋亚龙,黄展军,张荣锋,顾大均. 超、卸载作用下考虑接头影响的盾构管片承载性能研究. 北京交通大学学报. 2024(01): 20-31 .
    5. 张建伟,刘贺,曹克磊,黄锦林,王勇. TBM有压输水隧洞内张钢圈-管片-围岩组合结构联合承载力学特性分析. 岩土力学. 2024(04): 1154-1169+1180 .
    6. 周思剑,张迪,周建,李瑛,龚晓南. 基于TJS工法的盾构隧道运营变形控制. 浙江大学学报(工学版). 2024(07): 1427-1435 .
    7. 谢家冲,黄昕,金国龙,张子新. 内外水力交互下浅埋带压盾构隧道水土压力计算模型. 岩土工程学报. 2024(08): 1685-1694 . 本站查看
    8. 赵密,张凤琳,黄景琦,赵旭,曹胜涛,杜修力,谢伟杰. 正弯矩循环加载下粘钢加固管片接头动力特性数值模拟研究. 北京工业大学学报. 2024(11): 1326-1338 .
    9. 彭武. 基于钢板加固的盾构隧道管片衬砌承载性能数值模拟研究. 交通节能与环保. 2024(06): 254-261 .
    10. 杨绍毅,封坤,沐海星,薛皓匀,郭文琦,曹翔鹏. 穿越土-岩复合地层的盾构隧道纵向地震响应研究. 土木工程学报. 2024(S2): 133-141 .
    11. 魏义山,钟小春,刘浩源,王建军,张文斌,刘双全. 盾构近距离下穿工况下既有隧道钢环预加固弯曲刚度研究. 土木工程学报. 2024(S2): 120-126 .
    12. 王钦,魏纲,章丽莎,杨仲轩. 旁侧基坑开挖卸载工况下槽钢加固盾构管片的加固效果研究. 隧道建设(中英文). 2023(02): 285-295 .
    13. 杨成. 运营盾构隧道加固后衬砌-钢环复合体系力学性能研究. 广东土木与建筑. 2023(08): 89-92 .
    14. 王儒,翟五洲,倪海波,黄宏伟. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究. 隧道建设(中英文). 2023(S1): 178-188 .
    15. 刘学增,李振,杨芝璐. 盾构隧道钢板加固黏结面作用机制与参数影响分析. 中南大学学报(自然科学版). 2023(10): 3987-3999 .
    16. 石钰锋,胡梦豪,张涛,黄大维,黄展军,陈焕然. 强风化软岩地层盾构隧道荷载及受力特性分析. 隧道建设(中英文). 2023(S2): 91-99 .
    17. 温彦华,王旭. 地铁盾构隧道内张钢圈加固施工技术研究. 轨道交通装备与技术. 2023(S2): 42-45 .
    18. 于阳,孙雅珍,林志军,王金昌,叶友林. 侧向基坑开挖对盾构管片受力及裂损影响. 辽宁工程技术大学学报(自然科学版). 2022(04): 337-344 .

    Other cited types(15)

Catalog

    Article views PDF downloads Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return