• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Guo-bo, BA Feng, SUN Fu-xue, YUAN Ming-zhi, HAO Peng-fei. Seismic response analysis of long shield tunnels under non-uniform excitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1228-1237. DOI: 10.11779/CJGE202007006
Citation: WANG Guo-bo, BA Feng, SUN Fu-xue, YUAN Ming-zhi, HAO Peng-fei. Seismic response analysis of long shield tunnels under non-uniform excitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1228-1237. DOI: 10.11779/CJGE202007006

Seismic response analysis of long shield tunnels under non-uniform excitation

More Information
  • Received Date: October 15, 2019
  • Available Online: December 05, 2022
  • The numerical simulation method is used to study the seismic response of the soil-tunnel system under non-uniform excitation. The aim is to explore the response laws of the underground structures under non-uniform excitation and its difference with those under uniform excitation. First, based on the coherence function, power spectrum function and envelope function, the multi-point correlation artificial seismic synthesis is carried out, and the rationality of the synthesized artificial waves is verified by comparing with the target power spectra. Then, the generated seismic waves are batch-processed to obtain artificial seismic waves that can be used for calculation, including four kinds of waves, such as uniform waves, traveling waves, coherent waves, and coherent traveling waves. Taking a refined long shield tunnel model as the research object, the four kinds of waves are input respectively according to the unit at the bottom of the model, and the seismic response of tunnel structure and soil is calculated and analyzed. Based on the comparative analysis, the response of the ground and the tunnel under non-uniform excitation is smaller than that under the uniform waves when the longitudinal distance is small, but the peak acceleration response increases with the longitudinal distance and exceeds the response under uniform excitation. In frequency domain, the amplitude of the dominant frequency under the non-uniform excitation is reduced compared to that of the uniform waves, and the corresponding amplitude of the right frequency band of the dominant frequency increases. In addition, the non-uniform excitation will cause greater relative displacement of the linings and transverse plates in the tunnel cross-section. The influence of coherent waves and coherent traveling waves is greater, and more significant spatial variability is exhibited. Therefore, when conducting large-scale seismic simulation calculations, due consideration should be given to the spatial effects of ground motion.
  • [1]
    IIDA H, HIROTO T, YOSHIDA N, et al. Damage to Daikai subway station[J]. Soils & Foundations, 1996, 36: 283-300.
    [2]
    DOWDING C H, ROZAN A. Damage to rock tunnels from earthquake shaking[J]. Journal of the Soil Mechanics and Foundation Division, 1978, 104(2): 175-191.
    [3]
    JAYALAKSHMI S, RAGHUKANTH S T G. Regional ground motion simulation around Delhi due to future large earthquake[J]. Natural Hazards, 2016, 82(3): 1-35.
    [4]
    YENIER E, ATKINSON G M. An equivalent point‐source model for stochastic simulation of earthquake ground motions in California[J]. Bulletin of the Seismological Society of America, 2015, 105(3): 1435-1455. doi: 10.1785/0120140254
    [5]
    屈铁军, 王前信. 空间相关的多点地震动合成(I)基本公式[J]. 地震工程与工程振动, 1998, 18(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC801.001.htm

    QU Tie-jun, WANG Qian-xin. Simulation of spatial correlative time histories of multi-point ground motion, part I: fundamental formulas[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(1): 8-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC801.001.htm
    [6]
    屈铁军, 王前信. 空间相关的多点地震动合成(Ⅱ)合成实例[J]. 地震工程与工程振动, 1998, 18(2): 25-32.

    QU Tie-jun, WANG Qian-xin. Simulation of spatial correlative time histories of multi-point ground motion, part Ⅱ: application of fundamental formulas[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(2): 25-32. (in Chinese)
    [7]
    杨庆山, 姜海鹏. 基于相位差谱的时-频非平稳人造地震动的反应谱拟合[J]. 地震工程与工程振动, 2002, 22(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200201006.htm

    YANG Qing-shan, JIANG Hai-peng. Generation of response-spectrum-compatible ground motions based on phase-difference spectrum[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200201006.htm
    [8]
    WANG D, LI J. Physical random function model of ground motions for engineering purposes[J]. Science China (Technological Sciences), 2011, 54(1): 175-182. doi: 10.1007/s11431-010-4201-3
    [9]
    夏友柏, 王年桥, 张尚根. 一种合成多点地震动时程的方法[J]. 世界地震工程, 2002, 18(1): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200201022.htm

    XIA You-bai, WANG Nian-qiao, ZHANG Shang-gen. A simulation method for spatial correlative time histories of multi-point ground motion[J]. World Earthquake Engineering, 2002, 18(1): 119-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200201022.htm
    [10]
    吴祚菊. 空间相关性地震动生成及地下管线非一致性激励研究[D]. 成都: 西南交通大学, 2015.

    WU Zuo-ju. Generation of Spatial Correlation Ground Motion and the Study of Inconsistency Motivation About Underground Pipeline[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [11]
    GAO Yu-feng, WU Yong-xin, LI Bing. Simplified method for simulation of ergodic spatially correlated seismic ground motion[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(10): 1297-1314. doi: 10.1007/s10483-011-1501-x
    [12]
    姚二雷, 苗雨, 陈超. 基于奇异值分解的空间变异地震动模拟[J]. 华中科技大学学报(自然科学版), 2016, 44(10): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201610005.htm

    YAO Er-lei, MIAO Yu, CHEN Chao. Simulation of spatially varying ground motions based on singular value decomposition[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2016, 44(10): 22-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201610005.htm
    [13]
    范立础, 王君杰, 陈玮. 非一致地震激励下大跨度斜拉桥的响应特性[J]. 计算力学学报, 2001, 18(3): 358-363. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200103021.htm

    FAN Li-chu, WANG Jun-jie, CHEN Wei. Response characteristics of long-span cable-stayed bridges under non-uniform seismic action[J]. Chinese Journal of Computational Mechanics, 2001, 18(3): 358-363. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG200103021.htm
    [14]
    XIA H, HAN Y, ZHANG N, et al. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 2006, 35(12): 1563-1579.
    [15]
    SURH H B, RYU T Y, PARK J S, et al. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building[J]. Nuclear Engineering and Design, 2015, 292: 283-295.
    [16]
    杨庆山, 刘文华, 田玉基. 国家体育场在多点激励作用下的地震反应分析[J]. 土木工程学报, 2008, 41(2): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200802007.htm

    YANG Qing-shan, LIU Wen-hua, TIAN Yu-ji. Response analysis of national stadium under specially variable earthquake ground motions[J]. China Civil Engineering Journal, 2008, 41(2): 35-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200802007.htm
    [17]
    陈健云, 林皋. 多点输入随机地震动拱坝—地基体系反应分析[J]. 世界地震工程, 2000, 16(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200003008.htm

    CHEN Jian-yun, LIN Gao. Random response analysis of arch dam-foundation system subjected to multi-input seismic excitation[J]. World Earthquake Engineering, 2000, 16(3): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC200003008.htm
    [18]
    田利, 李宏男. 多维多点地震动激励下折线型输电塔线体系反应分析[J]. 土木工程学报, 2012, 45(增刊1): 131-135. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1026.htm

    TIAN Li, LI Hong-nan. Seismic response of fold linear type transmission tower-line system under multi-component multi-support excitations[J]. China Civil Engineering Journal, 2012, 45(S1): 131-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1026.htm
    [19]
    HARICHANDRAN R S, HAWWARI A, SWEIDAN B N. Response of long-span bridges to spatially varying ground motion[J]. Journal of Structural Engineering, 1996, 122(5): 476-484.
    [20]
    CLOUGH R W, PENZIEN J. Dynamics of Structures[M]. New York: McGraw Hill, 1993.
    [21]
    JENNINGS P C, HOUSNER G W, TSAI N C. Simulated Earthquake Motions[R]. Pasadena: California Institute of Technology, 1968.
    [22]
    庄海洋, 陈国兴, 梁艳仙, 等. 土体动非线性黏弹性模型及其ABAQUS软件的实现[J]. 岩土力学, 2007, 28(3): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200703003.htm

    ZHUANG Hai-yang, CHEN Guo-xing, LIANG Yan-xian, et al. A developed dynamic viscoelastic constitutive relations of soil and implemented by ABAQUS software[J]. Rock and Soil Mechanics, 2007, 28(3): 436-442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200703003.htm
  • Cited by

    Periodical cited type(3)

    1. 韩博文,蔡国庆,苏彦林,单冶鹏,李舰. 间歇荷载–湿化耦合作用下有砟轨道路基翻浆冒泥机制及动力特性试验研究. 岩石力学与工程学报. 2025(01): 69-80 .
    2. 蒋红光,王新宇,马川义,张宁,刘舜,王川. 高速铁路基床细颗粒动力迁移机制与临界水力梯度研究. 振动与冲击. 2025(06): 263-271 .
    3. 高峰,曾宪璋,钟闻华,黄生勇,张军辉. 多年冻土区道路工程病害处治技术研究进展与展望. 中外公路. 2024(05): 1-16 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return