• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Run, HAN De-qing, LIANG Chao, HAO Xin-tong. Inner frictional resistance of super-large-diameter steel pipe piles in sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1067-1075. DOI: 10.11779/CJGE202006010
Citation: LIU Run, HAN De-qing, LIANG Chao, HAO Xin-tong. Inner frictional resistance of super-large-diameter steel pipe piles in sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1067-1075. DOI: 10.11779/CJGE202006010

Inner frictional resistance of super-large-diameter steel pipe piles in sand

More Information
  • Received Date: October 07, 2019
  • Available Online: December 07, 2022
  • In recent years, with the increasing installed capacity of offshore wind power, the super-large-diameter steel pipe pile foundation has been widely applied. As the effect of soil plug weakens or disappears with the increase of the pile diameter, accurately calculating the inner frictional resistance of super-large-diameter steel pipe piles is especially important. In this study, the centrifugal model tests on the vertical bearing capacity of super-large-diameter steel pipe piles in sand are carried out using the double-wall pile form to study the inner frictional resistance. Then the action laws of the inner frictional resistance under different diameter-to-length ratios of steel pipe piles with diameter larger than 4 m are studied using the numerical simulation method. The calculated results are compared with API standard, and a new formula for calculating the inner frictional resistance is proposed. The research reveals that the inner frictional resistance of the super-large-diameter steel pipe pile shows a triangular pattern with the pile end greatly decreasing along the pile body. When the diameter-to-length ratio is less than 0.2, the inner frictional resistance of the steel pipe pile calculated by API standard is too large.
  • [1]
    LEONG E C, HOULSBY G T, RANDOLPH M F. One-dimensional analysis of soil plugs in pipe piles[J]. Géotechnique, 1991, 41(4): 587-598. doi: 10.1680/geot.1991.41.4.587
    [2]
    LEHANE B M, GAVIN K G. Base resistance of jacked pipe piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6): 473-480. doi: 10.1061/(ASCE)1090-0241(2001)127:6(473)
    [3]
    DE NICOLA A, RANDOLPH M F. The plugging behaviour of driven and jacked piles in sand[J]. Géotechnique,1997, 47(4): 841-856. doi: 10.1680/geot.1997.47.4.841
    [4]
    PAIK K, SALGADO R, LEE J, et al. Behavior of open and closed-ended piles driven into sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 296-306. doi: 10.1061/(ASCE)1090-0241(2003)129:4(296)
    [5]
    PAIK K, SALGADO R. Determination of bearing capacity of open-ended piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 46-57. doi: 10.1061/(ASCE)1090-0241(2003)129:1(46)
    [6]
    JEONG Sangseom, KO Junyoung, WHO Jinoh, et al. Bearing capacity analysis of open-ended piles considering the degree of soil plugging[J]. Soils and Foundations, 2015, 55(5): 1001-1014. doi: 10.1016/j.sandf.2015.06.007
    [7]
    倪敏. 大直径钢管桩竖向承载能力研究[D]. 天津: 天津大学, 2014.

    NI Min. Research on Axial Load-Bearing Capacity of Large Diameter Pipe Piles[D]. Tianjin: Tianjin University, 2014. (in Chinese)
    [8]
    方欣. 桩—土共同作用下大直径薄壁管桩的竖向受力性能数值模拟[J]. 黑龙江交通科技, 2015, 38(8): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJJ201508077.htm

    FANG Xin. Under pile-soil interaction numerical simulation of large diameter-walled pipe pile under vertical load performance[J]. Heilongjiang Jiaotong Keji, 2015, 38(8): 91-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLJJ201508077.htm
    [9]
    KO J, JEONG S, LEE J K. Large deformation FE analysis of driven steel pipe piles with soil plugging[J]. Computers and Geotechnics, 2016, 71: 82-97. doi: 10.1016/j.compgeo.2015.08.005
    [10]
    FUGLSANG L D. The application of the theory of modelling to centrifuge studies[C]//Centrifuge in Soil Mechanics. 1988: 119-138.
    [11]
    徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996(3): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC603.011.htm

    XU Guang-ming, ZHANG Wei-min. A study of size effect and boundary effect in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 1996(3): 80-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC603.011.htm
    [12]
    港口工程基桩静载荷试验规程:JTJ 255—2002[S]. 2002.

    Specification for Testing of Pile Under Static Load in Harbour Engineering: JTJ 255—2002[S]. 2002. (in Chinese)
    [13]
    LEHANE B M, SCHNEIDER J A, XU X. A Review of Design Methods for Offshore Driven Piles in Siliceous Sand[R]. Australia: University of Western Australia, 2005.
  • Cited by

    Periodical cited type(29)

    1. 谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 .
    2. 刘朝阳,刘雪丹,朱牧原,方勇. 泥岩地层盾构改良渣土流动度评价试验. 铁道建筑. 2025(02): 89-94 .
    3. 贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 .
    4. 丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
    5. 周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 .
    6. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    7. 万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 . 本站查看
    8. 赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 .
    9. 孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 .
    10. 杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 .
    11. QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 .
    12. 占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 . 本站查看
    13. 方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 . 本站查看
    14. 孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 .
    15. 王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 .
    16. 周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 .
    17. 常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 .
    18. 孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 .
    19. 季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 .
    20. 周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 .
    21. 魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 .
    22. 杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 .
    23. 杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 .
    24. 王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 .
    25. 朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 .
    26. 马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 .
    27. 常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 .
    28. 张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 .
    29. 杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 .

    Other cited types(11)

Catalog

    Article views (352) PDF downloads (209) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return