Citation: | LIU Run, HAN De-qing, LIANG Chao, HAO Xin-tong. Inner frictional resistance of super-large-diameter steel pipe piles in sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1067-1075. DOI: 10.11779/CJGE202006010 |
[1] |
LEONG E C, HOULSBY G T, RANDOLPH M F. One-dimensional analysis of soil plugs in pipe piles[J]. Géotechnique, 1991, 41(4): 587-598. doi: 10.1680/geot.1991.41.4.587
|
[2] |
LEHANE B M, GAVIN K G. Base resistance of jacked pipe piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6): 473-480. doi: 10.1061/(ASCE)1090-0241(2001)127:6(473)
|
[3] |
DE NICOLA A, RANDOLPH M F. The plugging behaviour of driven and jacked piles in sand[J]. Géotechnique,1997, 47(4): 841-856. doi: 10.1680/geot.1997.47.4.841
|
[4] |
PAIK K, SALGADO R, LEE J, et al. Behavior of open and closed-ended piles driven into sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(4): 296-306. doi: 10.1061/(ASCE)1090-0241(2003)129:4(296)
|
[5] |
PAIK K, SALGADO R. Determination of bearing capacity of open-ended piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1): 46-57. doi: 10.1061/(ASCE)1090-0241(2003)129:1(46)
|
[6] |
JEONG Sangseom, KO Junyoung, WHO Jinoh, et al. Bearing capacity analysis of open-ended piles considering the degree of soil plugging[J]. Soils and Foundations, 2015, 55(5): 1001-1014. doi: 10.1016/j.sandf.2015.06.007
|
[7] |
倪敏. 大直径钢管桩竖向承载能力研究[D]. 天津: 天津大学, 2014.
NI Min. Research on Axial Load-Bearing Capacity of Large Diameter Pipe Piles[D]. Tianjin: Tianjin University, 2014. (in Chinese)
|
[8] |
方欣. 桩—土共同作用下大直径薄壁管桩的竖向受力性能数值模拟[J]. 黑龙江交通科技, 2015, 38(8): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJJ201508077.htm
FANG Xin. Under pile-soil interaction numerical simulation of large diameter-walled pipe pile under vertical load performance[J]. Heilongjiang Jiaotong Keji, 2015, 38(8): 91-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLJJ201508077.htm
|
[9] |
KO J, JEONG S, LEE J K. Large deformation FE analysis of driven steel pipe piles with soil plugging[J]. Computers and Geotechnics, 2016, 71: 82-97. doi: 10.1016/j.compgeo.2015.08.005
|
[10] |
FUGLSANG L D. The application of the theory of modelling to centrifuge studies[C]//Centrifuge in Soil Mechanics. 1988: 119-138.
|
[11] |
徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996(3): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC603.011.htm
XU Guang-ming, ZHANG Wei-min. A study of size effect and boundary effect in centrifugal tests[J]. Chinese Journal of Geotechnical Engineering, 1996(3): 80-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC603.011.htm
|
[12] |
港口工程基桩静载荷试验规程:JTJ 255—2002[S]. 2002.
Specification for Testing of Pile Under Static Load in Harbour Engineering: JTJ 255—2002[S]. 2002. (in Chinese)
|
[13] |
LEHANE B M, SCHNEIDER J A, XU X. A Review of Design Methods for Offshore Driven Piles in Siliceous Sand[R]. Australia: University of Western Australia, 2005.
|
1. |
谢志恒,宋向荣,宋相帅,何熊. 新型盾构分散剂评价装置及泥饼分解特性研究. 施工技术(中英文). 2025(02): 148-153 .
![]() | |
2. |
刘朝阳,刘雪丹,朱牧原,方勇. 泥岩地层盾构改良渣土流动度评价试验. 铁道建筑. 2025(02): 89-94 .
![]() | |
3. |
贾思桢. 基于剪切试验的全风化花岗岩地层泡沫渣土改良研究. 四川建筑. 2024(01): 160-165 .
![]() | |
4. |
丁小彬,杨辉泰,施钰. EPB盾构刀盘泥饼成因分析及评价模型构建. 华南理工大学学报(自然科学版). 2024(05): 71-83 .
![]() | |
5. |
周志伟,郑文杰,白雪冬,武斌. 黄土黏附特性评价-室内试验和微观响应机制研究. 土木工程学报. 2024(06): 209-220 .
![]() | |
6. |
尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
![]() | |
7. |
万泽恩,尹威方,李树忱,景少森,王海波,许钦明. 电渗透法降低黏土-金属界面黏附力的机理与试验研究. 岩土工程学报. 2024(08): 1732-1741 .
![]() | |
8. |
赵兴,许佳磊,张志强. 上软下硬复合地层盾构渣土改良试验研究. 铁道标准设计. 2024(10): 150-158 .
![]() | |
9. |
孟善宝. 黄土地层土压平衡盾构刀盘堵塞风险研究. 铁道建筑技术. 2024(10): 63-66+89 .
![]() | |
10. |
杨国华. 软弱地层盾构渣土制备同步注浆浆液及工程应用. 岩土工程技术. 2024(06): 718-724 .
![]() | |
11. |
QIN ChengJin,WU RuiHong,HUANG GuoQiang,TAO JianFeng,LIU ChengLiang. A novel LSTM-autoencoder and enhanced transformer-based detection method for shield machine cutterhead clogging. Science China(Technological Sciences). 2023(02): 512-527 .
![]() |
|
12. |
占永杰,王树英,杨秀竹,王海波. 考虑级配影响的盾构泡沫改良粗粒土一维压缩理论计算模型. 岩土工程学报. 2023(08): 1644-1652 .
![]() | |
13. |
方勇,王宇博,王凯,钱聚强,陈中天,卓彬. 基于界面黏附力盾构堵塞风险评判方法研究. 岩土工程学报. 2023(09): 1813-1821 .
![]() | |
14. |
孙恒,杨擎,黄新淼,李杰华,张赟. 土压平衡盾构出渣温度实时监测系统设计与应用. 隧道建设(中英文). 2023(08): 1396-1403 .
![]() | |
15. |
王延辉,周天顺,胡俊山,陈海勇,施成华,彭宇,王祖贤. 高黏性黏土地层大直径泥水盾构掘进姿态失稳及其处理措施. 现代隧道技术. 2023(05): 213-223 .
![]() | |
16. |
周双禧. 基于量纲理论的盾构掘进扭矩计算模型. 工业建筑. 2023(S2): 500-502 .
![]() | |
17. |
常勇,任国平,髙始军,张箭,梁禹. 高黏性地层大直径泥水盾构刀盘结泥饼问题的处置. 工业建筑. 2023(S2): 596-601+595 .
![]() | |
18. |
孙云博,刘磊,李矿矿,崔超. 土压平衡盾构刀盘扭矩影响因素试验研究. 工业建筑. 2023(S2): 889-892 .
![]() | |
19. |
季昌,周顺华,姚琦钰,金钰寅,欧阳皖霖. 土压平衡盾构土仓内黏性渣土堵塞的模拟判别与分析. 同济大学学报(自然科学版). 2022(01): 60-69 .
![]() | |
20. |
周凯歌,方勇,廖杭,王凯,宋天田. 强风化混合花岗岩地层中盾构泥饼堵塞情况下渣土改良剂效果分析. 隧道建设(中英文). 2022(02): 283-290 .
![]() | |
21. |
魏力峰,叶来宾,黄际政,刘鹏程,方勇. 黏性地层盾构刀盘泥饼崩解特性试验研究. 隧道建设(中英文). 2022(02): 275-282 .
![]() | |
22. |
杨益,谭超,李兴高. 考虑温度效应的盾构法黏土-金属界面黏附力试验. 土木工程与管理学报. 2022(02): 120-125 .
![]() | |
23. |
杨柏超,张超. 某水利工程引水隧洞EPB盾构施工注浆压力与地表沉降关系研究. 黑龙江水利科技. 2022(04): 34-36 .
![]() | |
24. |
王文,潘雪瑛,赵延平,颜梦秋,陆地,陈孔磊. 土压平衡盾构刀盘泥饼堵塞改善研究. 土工基础. 2022(03): 304-307 .
![]() | |
25. |
朱连臣. 盾构隧道穿越泉域强富水灰岩地质掘进控制技术. 城市轨道交通研究. 2022(09): 160-165 .
![]() | |
26. |
马全武,赵凤凯,杨绍玉,杨星,江玉生,刘成龙. 土压平衡盾构黏土改良及其对滚刀影响的试验研究. 市政技术. 2022(11): 18-23+51 .
![]() | |
27. |
常嘉,胡耀越,马昊,白学涛,李宗亮. 特殊地质环境下地铁盾构造价异动测算分析. 工程经济. 2021(02): 13-18 .
![]() | |
28. |
张伟,赵东平,王卢伟,李栋,王德勇. 砂卵石地层大直径土压平衡盾构选型研究. 现代隧道技术. 2021(S1): 441-450 .
![]() | |
29. |
杨武林. 土压平衡盾构施工场地布置方法. 智能城市. 2020(24): 115-116 .
![]() |