• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, DING Xuan-chen, XU Sheng-ming, LIU Han-long, WANG Zhi-hua. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. DOI: 10.11779/CJGE202006005
Citation: ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, DING Xuan-chen, XU Sheng-ming, LIU Han-long, WANG Zhi-hua. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023-1031. DOI: 10.11779/CJGE202006005

Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests

More Information
  • Received Date: August 15, 2019
  • Available Online: December 07, 2022
  • Calcareous sandy foundations are susceptible to liquefaction when subjected to dynamic loading such as seismic or wave loading. The microbially induced calcite precipitation (MICP) treatment is a relatively new method to improve the liquefaction resistance of calcareous sand. In this study, several shake table tests are conducted to evaluate the seismic performance of MICP-treated calcareous sandy foundations. The influence of seismic history on dynamic performance of calcareous sand foundation is analyzed. The results indicate that the dynamic response of the soil after MICP treatment, including the excess pore water pressures and vertical settlements, can be divided into three main stages: the stable stage, rapid development stage, and gentle stage. The liquefaction resistance of MICP-treated sand is improved significantly. However, the surface accelerations for the MICP-treated models are amplified. Thus, when designing the treatment program, it is necessary to consider the tradeoff between the improved liquefaction resistance and the minimized undesirable amplified ground surface motions. The liquefaction resistance of MICP cementitious calcareous sand is related to intergranular cementation strength and relative density of soil and particle arrangement. The history of vibration improves the relative density of the foundation, and the liquefaction resistance significantly reduces the surface settlement.
  • [1]
    XIAO P, LIU H, XIAO Y, et al. Liquefaction resistance of bio-cemented calcareous sand[J]. Soil Dynamics & Earthquake Engineering, 2018, 107(1): 9-19.
    [2]
    ZHOU X Z, CHEN Y M, LI W W, et al. Monotonic and cyclic behaviors of loose anisotropically consolidated calcareous sand in torsional shear tests[J]. Marine Georesources & Geotechnology, 2019, 37(4): 438-451
    [3]
    VELEZ M, CRISTINA A. Evaluation of field based liquefaction approaches for calcareous sands using shear wave velocity[D]. Rhode Island: University of Rhode Island, 2014.
    [4]
    MORIOKA B T, NICHOLSON P G. Evaluation of the liquefaction potential of calcareous sand[C]//The Tenth International Offshore and Polar Engineering Conference, 2000, Washington: 494-450.
    [5]
    SHAHNAZARI H, JAFARIAN Y, TUTUNCHIAN M A, et al. Probabilistic assessment of liquefaction occurrence in calcareous fill materials of Kawaihae Harbor, Hawaii[J]. International Journal of Geomechanics, 2016, 16(6): 05016001. doi: 10.1061/(ASCE)GM.1943-5622.0000621
    [6]
    MONTOYA B M, DEJONG J T, BOULANGER R W, et al. Liquefaction mitigation using microbial induced calcite precipitation[J]. Proceedings of GeoCongress, 2012: 1918-1927.
    [7]
    WOODWARD J. An Introduction to Geotechnical Processes[M]. London and New York: Spon Press, 2005.
    [8]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201604010.htm
    [9]
    韩智光, 程晓辉. 可液化砂土微生物处置试验[J]. 哈尔滨工业大学学报, 2016, 48(12): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201612016.htm

    HAN Zhi-guang, CHENG Xiao-hui. An experimental study of microorganism's treatment on liquefiable sands[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 103-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201612016.htm
    [10]
    钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm

    QIAN Cun-xiang, WANG An-hui, WANG Xin. Advances of soil improvement with bio-grouting[J]. Rock & Soil Mechanics, 2015, 36(6): 1537-1548. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201506003.htm
    [11]
    DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
    [12]
    李明东, LIN Li, 张振东, 等. 微生物矿化碳酸钙改良土体的进展,展望与工程应用技术设计[J]. 土木工程学报, 2016, 49(10): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610013.htm

    LI Ming-dong, LIN Li, ZHANG Zhen-dong, et al. Review, outlook and application technology design on soil improvement by microbial induced calcium carbonate precipitation[J]. China Civil Engineering Journal, 2016, 49(10): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201610013.htm
    [13]
    刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410-3416. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm

    LIU Lu, SHEN Yang, LIU Han-long, et al. Application of bio-cement in erosion control of levees[J]. Rock and Soil mechanics, 2016, 37(12): 3410-3416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201612009.htm
    [14]
    孙潇昊, 缪林昌, 童天志, 等. 微生物沉积碳酸钙固化砂土试验研究[J]. 岩土力学, 2017, 38(11): 3225-3230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711019.htm

    SUN Xiao-hao, MIAO Lin-chang, TONG Tian-zhi, et al. Sand solidification test based on microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2017, 38(11): 3225-3230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711019.htm
    [15]
    高炎旭. 微生物诱导碳酸盐沉淀(MICP)团聚化垃圾焚烧飞灰试验研究[D]. 杭州: 浙江理工大学, 2017.

    GAO Yan-xu. Microbial Induced Carbonate Precipitation (MICP) Agglomeration of Fly Ash From Waste Incineration[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)
    [16]
    王茂林, 吴世军, 杨永强, 等. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究, 2018, 31(2): 206-214. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201802003.htm

    WANG Mao-lin, WU Shi-jun, YANG Yong-qiang, et al. Microbial induced carbonate precipitation and its application for immobilization of heavy metals: a review[J]. Research of Environmental Sciences, 2018, 31(2): 206-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201802003.htm
    [17]
    HAN Z, CHENG X, MA Q. An experimental study on dynamic response for MICP strengthening liquefiable sands[J]. Earthquake Engineering and Engineering Vibration, 2016, 15(4): 673-679.
    [18]
    MONTOYA B M, DEJONG J T, BOULANGER R W. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation[J]. Géotechnique, 2013, 63(4): 302-312.
    [19]
    程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486-1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    CHENG Xiao-hui, MA Qiang, YANG Zhuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486-1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
    [20]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm

    CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm
    [21]
    方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm

    FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
    [22]
    彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806012.htm

    PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048-1055. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201806012.htm

Catalog

    Article views (486) PDF downloads (301) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return