• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TAN Hao, JI Hong-guang, ZENG Zhi-yuan, LIU Zhi-qiang. Optimal drilling pressure of cone-tipped cutters based on characteristic size of hard and brittle rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 782-789. DOI: 10.11779/CJGE202004023
Citation: TAN Hao, JI Hong-guang, ZENG Zhi-yuan, LIU Zhi-qiang. Optimal drilling pressure of cone-tipped cutters based on characteristic size of hard and brittle rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 782-789. DOI: 10.11779/CJGE202004023

Optimal drilling pressure of cone-tipped cutters based on characteristic size of hard and brittle rocks

More Information
  • Received Date: May 23, 2019
  • Available Online: December 07, 2022
  • In order to improve the rock-breaking efficiency of raising boring cutters under hard brittle rock, it is necessary to obtain the optimal drilling pressure. The analysis of the size of rock ballast is an important means. The cone-tipped cutter is used to break hard brittle marble samples on the LCM testing machine, and the rock ballast is analyzed by means of the Rosin-Rammler distribution. By comparing the cumulative probability curve of size distribution of rock ballast, the characteristic size and specific energy under multiple drilling pressures, the relationship among drilling pressure, the characteristic size of rock ballast and specific energy are obtained. The optimum drilling pressure of marble samples is 34.45 and 35.19 kN respectively when the characteristic size is the largest and the specific energy is the smallest, so it is suggested that the drilling pressure should be set as 35 kN. The size distribution between hard brittle marble and granite is also analyzed under the same drilling pressure, and the characteristic sizes are obtained under different uniaxial compressive strengths. The results show that the characteristic size can reflect the rock-breaking effect of cone-tipped cutter, and the rock-breaking process conforms to the new surface theory of Rittinger. The characteristic size and specific energy are inversely proportional. Within a certain range of drilling pressure, the characteristic size of granite is larger than that of hard brittle marble, and the difference of characteristic size increases with the increase of drilling pressure.
  • [1]
    徐广龙, 刘志强. 琅琊山抽水蓄能电站竖井反井钻井施工技术[J]. 建井技术, 2006(5): 38-39, 24.

    XU Guang-long, LIU Zhi-qiang. Construction technology of raise boring in langyashan pumped storage power station[J]. Mine Construction Technology, 2006(5): 38-39, 24. (in Chinese)
    [2]
    彭爱华, 吴世斌, 唐鹏飞. 白鹤滩水电站左岸尾水排风竖井大直径反井钻机一次成型施工技术的应用[J]. 水利水电技术, 2015, 46(增刊2): 35-37.

    PENG Ai-hua, WU Shi-bin, TANG Peng-fei, et al. Application of one-stage forming construction technology of large diameter raising boring for tailrace ventilation shaft on left bank of baihetan hydropower station[J]. Water Resources and Hydropower Engineering, 2015, 46(S2): 35-37. (in Chinese)
    [3]
    周辉, 杨艳霜, 肖海斌, 等. 硬脆性大理岩单轴抗拉强度特性的加载速率效应研究——试验特征与机制[J]. 岩石力学与工程学报, 2013, 32(9): 1868-1875.

    ZHOU Hui, YANG Yan-shuang, XIAO Hai-bin, et al. Research on loading rate effect of tensile strength property of hard brittle marble—test characteristics and mechanism[J]. Journal of Rock Mechanics and Engineering, 2013, 32(9): 1868-1875. (in Chinese)
    [4]
    HAYATI Y, ÖZDOĞAN M V, ÖZFIRAT M K. A sampling study on rock properties affecting drilling rate index (DRI)[J]. Journal of African Earth Sciences, 2018, 141: 1-8.
    [5]
    闫长斌, 姜晓迪, 刘章恒, 等. 基于岩碴粒径分布规律的TBM破岩效率分析[J]. 岩土工程学报, 2019, 41(3): 466-474.

    YAN Chang-bin, JIANG Xiao-di, LIU Zhang-heng, et al. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Journal of Geotechnical Engineering, 2019, 41(3): 466-474. (in Chinese)
    [6]
    孙金山, 卢文波, 苏利军, 等. 基于TBM掘进参数和渣料特征的岩体质量指标辨识[J]. 岩土工程学报, 2008, 30(12): 1847-1854.

    SUN Jin-shan, LU Wen-bo, SU Li-jun, et al. Rock mass rating identification based on TBM performance parameters and muck characteristics[J]. Journal of Geotechnical Engineering, 2008, 30(12): 1847-1854. (in Chinese)
    [7]
    宋克志, 季立光, 袁大军, 等. 盘形滚刀切割岩碴粒径分布规律研究[J]. 岩石力学与工程学报, 2008(增刊1): 3016-3022.

    SONG Ke-zhi, JI Li-guang, YUAN Da-jun, et al. Research on distribution regularities of grain size of rock detritus from discoid cutters[J]. Journal of Rock Mechanics and Engineering, 2008(S1): 3016-3022. (in Chinese)
    [8]
    周振国. 岩碴观测对硬岩TBM施工的指导意义[J]. 现代隧道技术, 2002(3): 13-16.

    ZHOU Zhen-guo. Guiding significance of rock ballast observation for TBM construction in hard rock[J]. Modern Tunneling Technology, 2002(3): 13-16. (in Chinese)
    [9]
    王述红, 王存根, 赵贺兴, 等. 基于岩石破碎体积的滚刀效率评估模型[J]. 东北大学学报(自然科学版), 2016, 37(4): 554-557, 562.

    WANG Shu-hong, WANG Cun-ken, ZHAO He-xing, et al. Cutter efficiency assessment model based on broken rock volume[J]. Journal of Northeast University (Natural Science Edition), 2016, 37(4): 554-557, 562. (in Chinese)
    [10]
    陈文莉, 福井胜则, 大久保诚介. 关于掘进机械破碎岩片的研究[J]. 岩石力学与工程学报, 2003(6): 1037-1043.

    CHEN Wen-li, FUKUI K, OKUBO S, et al. Study on the detritus from different excavation machines and methods[J]. Journal of Rock Mechanics and Engineering, 2003(6): 1037-1043. (in Chinese)
    [11]
    孙金山, 陈明, 陈保国, 等. TBM滚刀破岩过程影响因素数值模拟研究[J]. 岩土力学, 2011, 32(6): 1891-1897.

    SUN Jin-shan, CHEN Ming, CHEN Bao-guo, et al. Numerical simulaiton of influence factors for rock fragmentation by TBM cutters[J]. Geotechnical Mechanics, 2011, 32(6): 1891-1897. (in Chinese)
    [12]
    刘立鹏, 汪小刚, 刘海舰, 等. TBM滚刀破岩机理与影响因素数值模拟研究[J]. 中国水利水电科学研究院学报, 2017, 15(5): 346-353, 359.

    LIU Li-peng, WANG Xiao-gang, LIU Hai-jian, et al. Numerical simulation research on rock breakage mechanism and influence tbm cutters[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15(5): 346-353, 359. (in Chinese)
    [13]
    方诗圣, 曾志远, 孟益平, 等. 镶齿滚刀破碎岩渣粒径分布规律研究[J]. 建井技术, 2017, 38(5): 28-31.

    FANG Shi-sheng, ZHENG Zhi-yuan, MENG Yi-ping, et al. Study on particle size distribution law of rock cuttings by inserted rolling cutters[J]. Mine Construction Technology, 2017, 38(5): 28-31. (in Chinese)
    [14]
    赵小军, 康鑫, 潘飞飞, 等. 孕镶金刚石钻头破碎花岗岩岩屑粒径分布研究[J]. 金刚石与磨料磨具工程, 2019, 39(1): 84-88.

    ZHAO Xiao-jun, KANG Xin, PAN Fei-fei, et al. Study on particle size distribution of fractured granite cuttings with impregnated diamond bit[J]. Diamond & Abrasives Engineering, 2019, 39(1): 84-88. (in Chinese)
    [15]
    MANOJ K, DANIAL J A. Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique[J]. Geotechnical and Geological Engineering, 2016, 34(2): 605-620.
    [16]
    SAEED A, GHOLAM R L, MOHAMMAD G, et al. Evaluating the relationships between NTNU/SINTEF drillability indices with index properties and petrographic data of hard igneous rocks[J]. Rock Mechanics and Rock Engineering, 2017, 50(11): 2929-2953.
    [17]
    汪莹莹. 不同齿形的镶齿滚刀破岩效果模拟仿真[D]. 合肥: 合肥工业大学, 2017.

    WANG Ying-ying. Numerical Analysis on Rock Breaking Effect with Different Inserted Tooth Rolling Cutters[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
    [18]
    吴帆, 殷丽君, 张浩, 等. 镶齿滚刀破岩机理及效率的旋转破岩试验[J]. 中国公路学报, 2018, 31(10): 150-159.

    WU Fan, YIN Li-jun, ZHANG Hao, et al. Rock fragmentation mechanism and efficiency under inserted-tooth roller cutter by rotary cutting test[J]. Journal of China Highway, 2018, 31(10): 150-159. (in Chinese)
    [19]
    徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.

    XU Xiao-he, YU Jing. Rock Fragmentation[M]. Beijing: Coal Industry Publishing House, 1984. (in Chinese)
    [20]
    张中俭, 杨曦光, 叶富建, 等. 北京房山大理岩的岩石学微观特征及风化机理讨论[J]. 工程地质学报, 2015, 23(2): 279-286.

    ZHANG Zhong-jian, YANG Xi-guang, YE Fu-jian, et al. Microscopic characteristics of petrography and discus-sion on weathering mechanism of fangshan marble in Beijing[J]. Journal of Engineering Geology, 2015, 23(2): 279-286. (in Chinese)
    [21]
    张宗贤, 寇绍全. 固体力学中侵入问题的若干新进展[J]. 力学进展, 1992(2): 183-193.

    ZHANG Zong-xian, KOU Shao-quan. Some new advances in invasion problems in solid mechanics[J]. Progress in Mechanics, 1992(2): 183-193. (in Chinese)
  • Cited by

    Periodical cited type(6)

    1. 张军辉,张安顺,彭俊辉,胡惠仁. 循环荷载下路基黏土永久变形特性及力学模型. 中国公路学报. 2024(06): 34-45 .
    2. 任戈,刘俊芳,刘鸿飞,白瑞刚,Ihsan Ullal. 基于Eshelby夹杂理论高温冻土累积塑性应变修正模型. 内蒙古工业大学学报(自然科学版). 2024(04): 368-372 .
    3. 张斌龙,刘强,王大雁,张吾渝,周志伟,郭文瑾. 主应力轴旋转条件下初始应力状态对冻结黏土动力特性的影响试验研究. 冰川冻土. 2024(05): 1603-1611 .
    4. 李月,江欣. 钻井液旋转粘度测试中双圆筒力矩分析. 钻探工程. 2024(S1): 96-103 .
    5. 孙凯,李志清,孔佑兴,周应新,王双娇. 单轴循环荷载下冻结土石混合体动弹性模量和累积塑性应变研究. 冰川冻土. 2023(06): 1730-1743 .
    6. 王亚鹏,李国玉,陈敦,马巍,张轩. 复杂循环应力路径下冻结粉质黏土的变形特性与安定性行为研究. 岩土工程学报. 2023(S2): 134-139 . 本站查看

    Other cited types(5)

Catalog

    Article views (259) PDF downloads (173) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return