Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAO Dong-xue, YUE Chong, CHEN Rong, REN Jie, CHEN Fu. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765-772. DOI: 10.11779/CJGE202004021
Citation: HAO Dong-xue, YUE Chong, CHEN Rong, REN Jie, CHEN Fu. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765-772. DOI: 10.11779/CJGE202004021

Shear characteristics and stress-dilation relation of medium sand under normal to high pressures

More Information
  • Received Date: May 07, 2019
  • Available Online: December 07, 2022
  • The triaxial shear tests on the sands with various relative densities under normal to high pressures are carried out to investigate the effects of density and confining pressure on sand strength and deformation characteristics. Their mechanical properties are analyzed. Among the pressures ranging from normal to medium (0.8 MPa≤σ3≤2 MPa), the strain-stress curves show strain softening to different extents, and the shear dilatancy increases with the increase of relative density and the decrease of confining pressure. When entering high confining pressure range (σ3> 2 MPa), the strain-stress curves gradually turn into strain hardening type and the sample volume gradually turns into shear contraction. Prominent particle breakages will occur in the later shearing period of medium and dense sands at high confining pressure, which may lead to the secondary phase transition in the shearing process. The failure friction angles decrease with the logarithmic confining pressure linearly, and the attenuation rates of failure friction angles for different density sands are determined by linear fitting. Based on the Bolton’s stress-dilation relation, the critical state friction angle of the sand is determined, and the relationship among dilatancy index, initial relative density and average effective stress is established to provide strength parameters for stability analysis of sandy soil foundation under normal to high pressures.
  • [1]
    蔡正银, 李相菘. 砂土的变形特性与临界状态[J]. 岩土工程学报, 2004, 26(5): 697-701. doi: 10.3321/j.issn:1000-4548.2004.05.025

    CAI Zheng-yin, LI Xiang-song. Deformation characteristics and critical state of sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 26(5): 697-701. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.025
    [2]
    黄茂松, 姚仰平, 尹振宇, 等. 土的基本特性及本构关系与强度理论[J]. 土木工程学报, 2016, 49(7): 9-35. doi: 10.15951/j.tmgcxb.2016.07.002

    HUANG Mao-song, YAO Yang-ping, YIN Zhen-yu, et al. An overview on elementary mechanical behaviors, constitutive modeling and failure criterion of soils[J]. China Civil Engineering Journal, 2016, 49(7): 9-35. (in Chinese) doi: 10.15951/j.tmgcxb.2016.07.002
    [3]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.

    LI Guang-xin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University, 2004. (in Chinese)
    [4]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [5]
    陆勇, 周国庆, 顾欢达. 常压至高压下砂土强度、变形特性试验研究[J]. 岩石力学与工程学报, 2016, 35(11): 2369-2376. doi: 10.13722/j.cnki.jrme.2016.0273

    LU Yong, ZHOU Guo-qing, GU Huan-da. Experimental study of strength and deformation characteristics of sand under different pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2369-2376. (in Chinese) doi: 10.13722/j.cnki.jrme.2016.0273
    [6]
    朱俊高, 史江伟, 罗学浩, 等. 密度对砂土应力应变强度特性影响试验研究[J]. 岩土工程学报, 2016, 38(2): 336-341. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602022.htm

    ZHU Jun-gao, SHI Jiang-wei, LUO Xue-hao, et al. Experimental study on stress-strain-strength behavior of sand with different densities[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 38(2): 336-341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602022.htm
    [7]
    XIAO Y, LONG L H, EVANS T M. Effect of particle shape on stress-dilatancy responses of medium-dense sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(2): 04018105. doi: 10.1061/(ASCE)GT.1943-5606.0001994
    [8]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1962, 269: 500-527.
    [9]
    BOLTON M D. The Strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. doi: 10.1680/geot.1986.36.1.65
    [10]
    SALGADO R, BANDINI P, KARIM A. Shear strength and stiffness of silty sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(5): 451-462. doi: 10.1061/(ASCE)1090-0241(2000)126:5(451)
    [11]
    CHAKRABORTY T, SALGADO R. Dilatancy and shear strength of sand at low confining pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(3): 527-532. doi: 10.1061/(ASCE)GT.1943-5606.0000237
    [12]
    ESPOSITO M P III, ANDRUS R D. Peak shear strength and dilatancy of a pleistocene age sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2017, 143(1): 04016079. doi: 10.1061/(ASCE)GT.1943-5606.0001582
    [13]
    VAID Y P, SASITHARAN S. The strength and dilatancy of sand[J]. Canadian Geotechnical Journal, 1992, 29(3): 522-526. doi: 10.1139/t92-058
    [14]
    GUO P J, SU X B. Shear strength, interparticle locking, and dilatancy of granular materials[J]. Canadian Geotechnical Journal, 2007, 44(6): 579-591.
    [15]
    土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [16]
    MARTIN B E, CAZACU O. Experimental and theoretical investigation of the high-pressure, undrained response of a cohesionless sand[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2013, 37(14): 2321-2347.
    [17]
    许成顺, 耿琳, 杜修力, 等. 反压对土体强度特性的影响试验研究及其影响机理分析[J]. 土木工程学报, 2016, 49(3): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603012.htm

    XU Cheng-shun, GENG Lin, DU Xiu-li, et al. Effect of back pressure on shear strength of sand: experimental study and mechanism analysis[J]. China Civil Engineering Journal, 2016, 49(3): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603012.htm
    [18]
    黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313-1319. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207021.htm

    HUANG Bo, WANG Qingjing, LING Dao-sheng, et al. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 34(7): 1313-1319. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207021.htm
    [19]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, ASCE, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [20]
    HSU S T, LIAO H J. Uplift behaviour of cylindrical anchors in sand[J]. Canadian Geotechnical Journal, 1998, 34: 70-80.
    [21]
    FRYDMAN S. Pullout capacity of slab anchors in sand[J]. Canadian Geotechnical Journal, 1989, 26: 385-400.
    [22]
    DICKIN E A. Uplift behavior of horizontal anchor plates in sand[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114: 1300-1317.
    [23]
    SADREKARIMI A, OLSON S M. Critical state friction angle of sands[J]. Géotechnique, 2011, 61(9): 771-783.
  • Cited by

    Periodical cited type(18)

    1. 梁越,罗安志,杨牛虎,许彬,代磊. 恒定围压下间断级配散粒土内部侵蚀机理研究. 防灾减灾工程学报. 2025(01): 224-232 .
    2. 张远庆,陈勇,王世梅,王力. 岸坡渗流潜蚀模型试验系统变革研究. 三峡大学学报(自然科学版). 2025(02): 48-54 .
    3. 杨彪山,查浩,国鸿圆. 多向汇水条件下弃渣土体细颗粒启动机制研究. 地质灾害与环境保护. 2025(01): 88-96 .
    4. 梁越,冉裕星,许彬,张鑫强,何慧汝. 细颗粒含量影响渗流侵蚀规律的细观机理研究. 岩土工程学报. 2025(05): 1099-1106 . 本站查看
    5. 梁越,喻金桃,张强,许彬,张宏杰,龚胜勇. 骨架颗粒组成对散粒土管涌规律影响的试验研究. 河海大学学报(自然科学版). 2024(01): 63-69 .
    6. 黄达,高溢康,黄文波. 基于CT扫描的渗流作用下碎石土孔隙结构变化规律研究. 水文地质工程地质. 2024(02): 123-131 .
    7. 王浩,许少鸿,陈叶健,徐陈灵,黄瑛瑛. 闽粤地区花岗岩风化土体粘粒迁移过程的土柱渗流试验. 山地学报. 2024(01): 132-142 .
    8. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    9. 刘垒雷,邓刚,李维朝,陈锐,周超,徐立强. 不同细粒含量与间断比下不连续级配砂砾土渗蚀的CFD-DEM数值模拟. 中南大学学报(自然科学版). 2024(07): 2677-2689 .
    10. 王櫹橦,陈盟,唐莹影,袁仁茂. 透明土试验技术在滑坡降雨入渗中的研究与应用. 煤炭学报. 2024(07): 3051-3062 .
    11. 胡焕校,谢中良,甘本清,卢雨帆,邓超. 透明砂土基本特性及其在注浆模型试验中的应用. 水资源与水工程学报. 2024(04): 179-186 .
    12. 王润北,吴能森. 平动模式下墙后有限黏性填土破坏模型试验研究. 河南城建学院学报. 2024(04): 72-79 .
    13. 梁越,何慧汝,许彬,张鑫强,冉裕星. 基于透明土的水力梯度对渗流侵蚀影响试验研究. 河海大学学报(自然科学版). 2024(05): 60-66 .
    14. 徐春瑞,郭畅,黄博. 孔隙率对砂土渗透稳定性影响的内部可视化研究. 地基处理. 2024(05): 451-462 .
    15. 徐春瑞,薛阳,郭畅,黄博. 超重力下粒子图像测速系统性能测试与评价. 地基处理. 2024(06): 547-556 .
    16. 何建新,董旭光,马渊博. 坡顶荷载作用下多级边坡失稳演化机制的透明土试验研究. 西北工程技术学报. 2024(04): 347-355 .
    17. 张亮亮,邓刚,陈锐,张茵琪,罗之源. 不连续级配无黏性土渗蚀演变特征研究. 岩土工程学报. 2023(07): 1412-1420 . 本站查看
    18. 王力,张晨宇,王世梅,潘宇晨. 波浪侵蚀诱发碎石土岸坡变形的模拟试验研究. 泥沙研究. 2023(04): 45-52 .

    Other cited types(13)

Catalog

    Article views PDF downloads Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return