• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Wei-jia, CHEN Guo-xing, QIN You, WU Qi. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. DOI: 10.11779/CJGE202003022
Citation: MA Wei-jia, CHEN Guo-xing, QIN You, WU Qi. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. DOI: 10.11779/CJGE202003022

Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand

More Information
  • Received Date: March 24, 2019
  • Available Online: December 07, 2022
  • In order to investigate the liquefaction characteristics of saturated coral sand from Nansha Islands under different initial major stress direction angles (α0), a series of undrained cyclic torsional shear tests for saturated coral sand are carried out by using the GDS hollow cylinder torsional apparatus. A remarkable finding of this study is that, α0 has significant influence on the liquefaction characteristics of coral sand, the excess pore water pressure (ue) for case α0 ≠ 45° cannot reach the initial mean principal stress p0, but the ue for case α0 = 45° can eventually reach do. The developments of strain components for various α0 cases are different, but the specimens for all α0 cases will produce larger general shear strain amplitude (γga), and the correlation between the ue to p0 and γga can be expressed approximately as tangent function. Based on the experimental data, the number of cycles (NL) required to induce initial liquefaction decreases with the increasing α0 for a given cyclic stress ratio (CSR). However, by defining the modified cyclic stress ratio (CSRM) as a new index for cyclic stress level, a virtually unique relationship between CSRM and NL can be established for all α0 cases. The applicability of CSRM is verified by the original test data of saturated sands from the literatures.
  • [1]
    朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm

    ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al. Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407003.htm
    [2]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. doi: 10.3969/j.issn.1000-7598.2005.09.008

    CHEN Hai-yang, WANG Ren, LI Jian-guo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008
    [3]
    HYODO M, HYDE A F L, ARAMAKI N. Liquefaction of crushable soils[J]. Géotechnique, 1998, 48(4): 527-543. doi: 10.1680/geot.1998.48.4.527
    [4]
    MAO X, FAHEY M. Behaviour of calcareous soils in undrained cyclic simple shear[J]. Géotechnique, 2003, 53(8): 715-727. doi: 10.1680/geot.2003.53.8.715
    [5]
    SHARMA S S, ISMAIL M A. Monotonic and cyclic behavior of two calcareous soils of different origins[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(12): 1581-1591. doi: 10.1061/(ASCE)1090-0241(2006)132:12(1581)
    [6]
    李建国. 波浪荷载作用下饱和钙质砂动力特性的试验研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2005.

    LI Jian-guo. Experimental Research on Dynamic Behavior of Saturated Calcareous Sand Under Wave Loading[D]. Wuhan: Institute of Rock & Soil Mechanics China Academy of Sciences, 2005. (in Chinese)
    [7]
    虞海珍. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学, 2006.

    YU Hai-zhen. Experimental Research on Dynamic Behavior of Saturated Calcareous Sand Under Complex Stress Conditions[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese)
    [8]
    SATO K, YASUHARA K, YOSHIDA N. Effect of pre-shearing with drainage on undrained cyclic shear behaviour of dense sand[C]//Proeeedings of the Ninth International Offshore and Polar Engineering Conferenee. France, 1999: 542-547.
    [9]
    付磊, 王洪瑾, 周景星, 等. 主应力偏转角对砂砾料动力特性影响的试验研究[J]. 岩土工程学报, 2000, 22(4): 435-440. doi: 10.3321/j.issn:1000-4548.2000.04.010

    FU Lei, WANG Hong-jin, ZHOU Jing-xing, et al. Effect of initial rotation angle of principal stress on the dynamic properties of soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 435-440. (in Chinese) doi: 10.3321/j.issn:1000-4548.2000.04.010
    [10]
    郭莹, 栾茂田, 许成顺, 等. 主应力方向变化对松砂不排水动强度特性的影响[J]. 岩土工程学报, 2003, 25(6): 666-670. doi: 10.3321/j.issn:1000-4548.2003.06.004

    GUO Ying, LUAN Mao-tian, XU Chen-shun. et al. Effect of variation of principal stress orientation on undrained dynamic strength behavior of loose sand[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 666-670. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.06.004
    [11]
    潘华. 复杂应力条件下饱和南京细砂动力特性试验研究[D]. 南京: 南京工业大学, 2011.

    PAN Hua. Experimental Research on Dynamic Behavior of Saturated Nanjing Fine Sand under Complex Stress Conditions[D]. Nanjing: Nanjing University of Technology, 2011. (in Chinese)
    [12]
    HIGHT D W, GENS A, SYMES M J. The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383. doi: 10.1680/geot.1983.33.4.355
    [13]
    YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371-384. doi: 10.1680/geot.2007.57.4.371
    [14]
    CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, in press.
    [15]
    ISHIHARA K, YAMAZAKI A. Analysis wave-induced liquefaction in seabed deposits of sand[J]. Soils and Foundations, 1984, 24(3): 85-100. doi: 10.3208/sandf1972.24.3_85
    [16]
    HUANG B, CHEN X, ZHAO Y. A new index for evaluating liquefaction resistance of soil under combined cyclic shear stresses[J]. Engineering Geology, 2015, 199: 125-139. doi: 10.1016/j.enggeo.2015.10.012
    [17]
    SEED H B, IDRISS I M, ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    [18]
    CASAGRANDE A. Charateristics of cohensionless soils affecting the stability of slopes and earth fill[J]. Journal of Boston Society of Civil Engineering, 1936: 257-276.
    [19]
    俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2): 1-10. doi: 10.3321/j.issn:1000-4548.1994.02.001

    YU Mao-hong. Unified strength theory for geomaterials and its applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2): 1-10. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.02.001
    [20]
    李建国, 汪稔, 虞海珍, 等. 初始主应力方向对钙质砂动力特性影响的试验研究[J]. 岩土力学, 2005, 26(5): 723-727. doi: 10.3969/j.issn.1000-7598.2005.05.009

    LI Jian-guo, WANG Ren, YU Hai-zhen, et al. Experimental research on effect of initial principal stress orientation on dynamic properties of calcareous sand[J]. Rock and Soil Mechanics, 2005, 26(5): 723-727. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.05.009
    [21]
    CHEN G X, WU Q, SUN T, et al. Cyclic behaviors of saturated sand-gravel mixtures under undrained cyclic triaxial loading[J]. Journal of Earthquake Engineering, in press.

Catalog

    Article views (322) PDF downloads (151) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return