• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Wei, CHEN Ren-peng, KANG Xin, Zaoui Ali. Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004
Citation: YANG Wei, CHEN Ren-peng, KANG Xin, Zaoui Ali. Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 239-245. DOI: 10.11779/CJGE202002004

Radionuclide adsorption mechanism in buffer materials in high-level radioactive waste container: MD study

More Information
  • Received Date: November 12, 2018
  • Available Online: December 07, 2022
  • The buffer material plays a decisive role in preventing the radionuclide to enter into the host rock, as it is the last defense of engineered barrier system. Under very high groundwater pressure, a large amount of cations percolate through the barrier with underground water, resulting in a complicated chemical condition. Molecular dynamics simulation is performed to deeply investigate the adsorption mechanism of radionuclide species onto substituted montmorillonite (001) surface in the presence of different counterions. MD simulations exhibit three typical adsorption modes: outer-sphere complex, monodentate inner-sphere complex and bidentate inner-sphere complex. With the presence of carbonate ions and covalent cations, the U atom in uranyl can coordinate with carbonate oxygen in connection with cations to form an intensive adsorption complex with MMT surface. The thermodynamic work of adhesion between the complexes and the MMT surface is calculated to evaluate the adsorption interaction. The complexes with the carbonate and covalent cation components exhibit a relatively high adhesion with the buffer material surface.
  • [1]
    杨波. 中国核电发展现状及趋势[J]. 世界环境, 2014(3): 18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm

    YANG Bo. Current situation and development trend of nuclear power in China[J]. World Environment, 2014(3): 18-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJHJ201403009.htm
    [2]
    ZHANG C L, WANG J, SU K. Concepts and tests for disposal of radioactive waste in deep geological formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 750-767.
    [3]
    GECKEIS H, L TZENKIRCHEN J, POLLY R, et al. Mineral-water interface reactions of actinides[J]. Chemical Reviews, 2013, 113(2): 1016. doi: 10.1021/cr300370h
    [4]
    SILVA J C G E D, CAMPOS B, AGUILAR J, et al. Adsorption of uranyl ions on kaolinite, smectite, humic acids and composite clay materials[J]. Applied Clay Science, 2013.
    [5]
    RIHS S, GAILLARD C, REICH T, et al. Uranyl sorption onto birnessite: A surface complexation modeling and EXAFS study[J]. Chemical Geology, 2014, 373(19): 59-70.
    [6]
    FERNANDES M M, BAEYENS B, D HN R, et al. U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study[J]. Geochimica Et Cosmochimica Acta, 2012, 93: 262-277. doi: 10.1016/j.gca.2012.04.017
    [7]
    MARQUES FERNANDES M, BAEYENS B, BRADBURY M H. The influence of carbonate complexation on lanthanide/actinide sorption on montmorillonite[J]. International Journal for Chemical Aspects of Nuclear Science & Technology, 2008, 96(9-11): 691-697.
    [8]
    REEDER R J, NUGENT M, PABALAN R T. Local strcuture of uranium(VI) sorbed on clinoptilolite and montmorillonite[J]. Water-Rock Interaction, 2001: 423-426.
    [9]
    PABALAN R T, TURNER D R. Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study[J]. Aquatic Geochemistry, 1997, 2(3): 203-226. doi: 10.1007/BF00119855
    [10]
    YANG W, ZHENG Y, ZAOUI A. Swelling and diffusion behaviour of Na-vermiculite at different hydrated states[J]. Solid State Ionics, 2015, 282: 13-17. doi: 10.1016/j.ssi.2015.09.007
    [11]
    YANG W, ZAOUI A. Uranyl adsorption on (001) surfaces of kaolinite: A molecular dynamics study[J]. Applied Clay Science, 2013, 81(4): 98-106.
    [12]
    ZHANG C, LOU Z. Freezing of water confined in porous materials: role of adsorption and unfreezable threshold[J]. Acta Geotechnica, 2018(6): 1-11.
    [13]
    ZHANG C, LOU Z, DENG P. Contact angle of soil minerals: A molecular dynamics study[J]. Computers & Geotechnics, 2016, 75: 48-56.
    [14]
    张陶娜, 徐雪雯, 董亮, 等. 分子动力学方法模拟不同温度下铀酰在叶腊石上的吸附和扩散行为[J]. 物理化学学报, 2017(10): 2013-2021. https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm

    ZHANG Tao-na, XU Xue-wen, DONG Liang, et al. The adsorption and diffusion behaviors of uranyl on pyrophyllite at different temperatures: Molecular dynamics simulatons[J]. Acta Physico-Chemica Sinica, 2017(10): 2013-2021. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLHX201710016.htm
    [15]
    GREATHOUSE J A, CYGAN R T. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite:  results from molecular simulations[J]. Environmental Science & Technology, 2006, 40(12): 3865.
    [16]
    KERISIT S, LIU C. Molecular dynamics simulations of uranyl and uranyl carbonate adsorption at aluminosilicate surfaces[J]. Environmental Science & Technology, 2014, 48(7): 3899.
    [17]
    ZHENG Y, ZAOUI A, SHAHROUR I. A theoretical study of swelling and shrinking of hydrated Wyoming montmorillonite[J]. Applied Clay Science, 2011, 51(1/2): 177-181.
    [18]
    VALLET V, WAHLGREN U, SCHIMMELPFENNIG B, et al. Solvent effects on uranium(VI) fluoride and hydroxide complexes studied by EXAFS and quantum chemistry[J]. Inorganic Chemistry, 2001, 40(14): 3516-3525. doi: 10.1021/ic001405n
    [19]
    RANDALL T C, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
    [20]
    GUILBAUD P, WIPFF G. Hydration of UO[sub 2[sup 2+]] cation and its NO[sub 3][sup [minus]] and 18-crown-6 adducts studied by molecular dynamics simulations[J]. Journal of Physical Chemistry, 1993, 97(21): 5685-5692.
    [21]
    GREATHOUSE J A, CYGAN R T. Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface[J]. Physical Chemistry Chemical Physics, 2005, 7(20): 3580.
    [22]
    LIU X Y, WANG L H, ZHENG Z, et al. Molecular dynamics simulation of the diffusion of uranium species in clay pores[J]. Journal of Hazardous Materials, 2013, 244/245(2): 21.
    [23]
    YANG W, ZAOUI A. Behind adhesion of uranyl onto montmorillonite surface: a molecular dynamics study[J]. Journal of Hazardous Materials, 2013, 261(20): 224.
    [24]
    KELLY S D, KEMNER K M, BROOKS S C. X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations[J]. Geochimica Et Cosmochimica Acta, 2007, 71(4): 821-834.
    [25]
    ALLEN P G, BUCHER J J, CLARK D L, et al. Multinuclear NMR, Raman, EXAFS, and X-ray diffraction studies of uranyl carbonate complexes in near-neutral aqueous solution. X-ray structure of[C(NH2)3]6[(UO2)3(CO3)6][J]. Inorganic Chemistry, 1995, 34(19): 4797-4807.
    [26]
    MONTROLL E W, LEBOWITZ J L. The Liquid State of Matter: Fluids, Simple and Complex[M]. New York: North-Holland Pub. Co, 1982: 521.
  • Cited by

    Periodical cited type(5)

    1. 黄炜,简文彬,杨坚,豆红强,罗金妹. 新型多支盘土锚的承载性能研究. 工程地质学报. 2025(02): 772-782 .
    2. 谷复光,王军,常虹. 注浆支盘式锚杆承载特性数值模拟分析. 低温建筑技术. 2024(07): 134-138 .
    3. 孙世国,谢远东,宋腾飞. 锚杆扩大头不同受力方向对其承载能力影响机制探究. 北京工业职业技术学院学报. 2023(01): 1-4 .
    4. 黄炜,简文彬,杨坚,豆红强,罗金妹. 多支盘锚杆的原型试验与荷载传递特征分析. 岩土力学. 2023(02): 520-530 .
    5. 董旭光,李峥,崔自治,李宏波,王永胜. 一种边坡真空锚管研发及工作机理分析. 铁道学报. 2022(12): 114-124 .

    Other cited types(2)

Catalog

    Article views (349) PDF downloads (250) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return