• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
AN Ran, LI Cheng-sheng, KONG Ling-wei, GUO Ai-guo. Effects of drilling disturbance and unloading lag on in-situ mechanical characteristics of granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 109-116. DOI: 10.11779/CJGE202001012
Citation: AN Ran, LI Cheng-sheng, KONG Ling-wei, GUO Ai-guo. Effects of drilling disturbance and unloading lag on in-situ mechanical characteristics of granite residual soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 109-116. DOI: 10.11779/CJGE202001012

Effects of drilling disturbance and unloading lag on in-situ mechanical characteristics of granite residual soil

More Information
  • Received Date: March 17, 2019
  • Available Online: December 07, 2022
  • The granite residual soil is a kind of special structural soil with both engineering and fabric characteristics of clay and coarse grained soil. Its engineering performance is generally susceptible to disturbance damage and excavation unloading, which may lead to engineering disasters. Through the comparison tests of SBPT and PMT in different predrilling unloading lag time in a typical layer of granite residual soil, the response characteristics of in-situ stiffness attenuation characteristics, strength indexes and bearing capacity of granite residual soil are analyzed. The results show that the weakening effect of drilling disturbance on the strength, bearing capacity and stiffness of granite residual soil is obvious, and the weakening degree increases with the increase of stress release time during unloading period. The order of influence degree of drilling disturbance and unloading delay on each parameter is evaluated by disturbance factor R(u): the effect on stiffness parameter Gs is the largest, followed by undrained shear strength Cu and bearing capacity fak. The in-situ G-γ curves of SBPT and PMT tests are obtained by nonlinear stiffness analysis and effectively fitted by the equation proposed by Ken Stokoe. The research results may provide the reference for engineering design and construction in the granite residual soil area.
  • [1]
    吴能森. 结构性花岗岩残积土的特性及工程问题研究[D]. 南京: 南京工业大学, 2005.

    WU Neng-sen. A Study on Characteristics and Some Engineering Problems of Granite Residual Soil with Structural[D]. Nanjing: Nanjing Tech University, 2005. (in Chinese)
    [2]
    QIAN Z, RAHARDJO H, SATYANAGA A. Variability in unsaturated hydraulic properties of residual soil in Singapore[J]. Engineering Geology, 2016, 209: 21-29. doi: 10.1016/j.enggeo.2016.04.034
    [3]
    杨光华. 广东深基坑支护工程的发展及新挑战[J]. 岩石力学与工程学报, 2012, 31(1): 2276-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211015.htm

    YAN Guang-hua. Development and new challenges of deep excavation supporting engineering in Guangdong province[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(1): 2276-2284. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211015.htm
    [4]
    竺维彬, 鞠世健, 张弥, 等. 广州地铁二号线盾构穿越珠江的工程难题及对策[J]. 土木工程学报, 2004, 37(1): 56-60. doi: 10.3321/j.issn:1000-131X.2004.01.010

    ZHU Wei-bin, JU Shi-jian, ZHANG Mi, et al. On the engineering poser and countermeasures of driving and crossing the pearl river with two used TBMs in Guangzhou metro line of. No.2[J]. China Civil Engineering Journal, 2004, 37(1): 56-60. (in Chinese) doi: 10.3321/j.issn:1000-131X.2004.01.010
    [5]
    许旭堂, 简文彬, 吴能森, 等. 降雨诱发残积土坡失稳的模型试验[J]. 中国公路学报, 2018, 31(2): 270-279. doi: 10.3969/j.issn.1001-7372.2018.02.029

    XU Xu-tang, JIAN Wen-bin, WU Neng-sen, et al. Model test of rainfall-induced residual soil slope failure[J]. China Journal of Highway and Transport, 2018, 31(2): 270-279. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.02.029
    [6]
    高建国. 花岗岩风化土中地铁基坑施工风险和对策[J]. 铁道勘察, 2010, 36(3): 117-121. doi: 10.3969/j.issn.1672-7479.2010.03.035

    GAO Jian-guo. Risks in construction of foundation pits for subway in weathering soil of granite as well as its countermeasures[J]. Railway Investigation and Surveying, 2010, 36(3): 117-121. (in Chinese) doi: 10.3969/j.issn.1672-7479.2010.03.035
    [7]
    邱路阳, 刘毓氚, 李大勇. 高填方残积土路堤降雨滑塌机理与治理对策[J]. 岩土力学, 2007, 28(10): 2161-2166. doi: 10.3969/j.issn.1000-7598.2007.10.030

    QIU Lu-yang, LIU Yu-chuan, LI Da-yong. A case study of failure mechanism of residual soil filled embankment[J]. Rock and Soil Mechanics, 2007, 28(10): 2161-2166. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.10.030
    [8]
    郑敏洲, 简文彬, 吴茂明. 花岗岩残积土边坡稳定性可靠度分析[J]. 岩石力学与工程学报, 2005, 34(增刊2): 5337-5340. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2010.htm

    ZHENG Min-zhou, JIAN Wen-bin, WU Mao-ming. Reliability analysis of stability of granite residual soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 34(S2): 5337-5340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2010.htm
    [9]
    庞小朝, 黄俊杰, 苏栋, 等. 深圳地区原状花岗岩残积土硬化土模型参数的试验研究[J]. 岩土力学, 2018, 39(11): 4079-4085. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811021.htm

    PANG Xiao-chao, HUANG Jun-jie, SU Dong, et al. Experimental study on parameters of the hardening soil model for undisturbed granite residual soil in Shenzhen[J]. Rock and Soil Mechanics, 2018, 39(11): 4079-4085. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811021.htm
    [10]
    NG C W W, CHIU A C F. Laboratory study of loose saturated and unsaturated decomposed granitic soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 550-559. doi: 10.1061/(ASCE)1090-0241(2003)129:6(550)
    [11]
    ZHANG Wen-gang, WANG Wei, ZHOU Dong, et al. Influence of groundwater drawdown on excavation responses e: a case history in Bukit Timah granitic residual soils[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(5): 856-864. doi: 10.1016/j.jrmge.2018.04.006
    [12]
    方祥位, 陈正汉, 申春妮, 等. 残积土特殊应力路径的三轴试验研究[J]. 岩土力学, 2005, 26(6): 932-936. doi: 10.3969/j.issn.1000-7598.2005.06.022

    FANG Xiang-wei, CHEN Zheng-han, SHEN Chun-ni, et al. Test study on residual soil under special stress paths[J]. Rock and Soil Mechanics, 2005, 26(6): 932-936. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.06.022
    [13]
    孙静, 袁晓铭, 陶夏新. 室内和现场测试最大动剪切模量差别的试验研究[J]. 土木工程学报, 2012, 45(增刊1): 258-262. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1051.htm

    SUN Jing, YUAN Xiao-ming, TAO Xia-xin. Comparative study on laboratory and field test of maximum dynamic shear modulus[J]. China Civil Engineering Journal, 2012, 45(S1): 258-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2012S1051.htm
    [14]
    张先伟, 李仁耿, 郑永民, 等. 顺德强风化岩层预应力管桩桩端土软化的现场试验研究[J]. 中国科学:技术科学, 2016, 46(9): 975-986.

    ZHANG Xian-wei, LI Ren-geng, ZHENG Yong-min, et al. Field experimental study on prestressed concrete tube-pile bearing stratum softening in strong weathered rock formation of Shunde area[J]. Scientia Sinica Technological, 2016, 46(9): 975-986. (in Chinese)
    [15]
    胡琦, 许四法, 陈仁朋, 等. 深基坑开挖土体扰动及其对邻近地铁隧道的影响分析[J]. 岩土工程学报, 2013, 35(增刊2): 537-541. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2093.htm

    HU Qi, XU Si-fa, CHEN Ren-peng, et al. Influence of soil disturbance on metro tunnel in soft clay due to excavation of deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 537-541. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2093.htm
    [16]
    杨科, 贾坚. 上海软土基坑变形土体扰动机理及室内试验研究[J]. 地下空间与工程学报, 2013, 9(6): 1266-1270, 1282. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201306008.htm

    YANG Ke, JIA Jian. Experimental and theoretical research on deformation mechanism of disturbed soil outside excavation pit in Shanghai clay[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(6): 1266-1270, 1282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201306008.htm
    [17]
    郭林坪, 孔令伟, 徐超, 等. 厦门花岗岩残积土物理力学指标关联性定量表征初探[J]. 岩土力学, 2018, 39(增刊1): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1022.htm

    GUO Lin-ping, KONG Ling-wei, XU Chao, et al. Preliminary study of quantitative relationships between physical and mechanical indices of granite residual soil in Xiamen[J]. Rock and Soil Mechanics, 2018, 39(S1): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1022.htm
    [18]
    FONSECA A V, SILVA S R, CRUZ N. Geotechnical characterization by in situ and lab tests to the back analysis of a supported excavation in Metro do Porto[J]. Geotechnical and Geological Engineering, 2010, 28(3): 251-264.
    [19]
    石祥锋, 汪稔, 张家铭, 等. 旁压试验在岩土工程中的应用[J]. 岩石力学与工程学报, 2004, 23(增刊1): 4442-4445. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1037.htm

    SHI Xiang-feng, WANG Ren, ZHANG Jia-ming, et al. Application of pressuremeter tests in geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(S1): 4442-4445. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2004S1037.htm
    [20]
    SA’DON N M, MICHAEL J P, KARIM A R A. Dynamic soil stiffness between WAK, SASW and SCPT tests[M]//InCIEC. Singapore: Springer, 2014: 461-475.
    [21]
    JARDINE R J, POTTS D M, FOURIE A B, et al. Studies of the influence of non-linear stress-strain characteristics in soil- structure interaction[J]. Géotechnique, 1986, 36(3): 377-396.
    [22]
    CAO L F, THE C I, CHANG M F. Undrained cavity expansion in modified cam clay: I theoretical analysis[J]. Géotechnique, 2001, 51(4): 323-334.
    [23]
    MUIR WOOD D. Strain-dependent moduli and pressuremeter tests[J]. Géotechnique, 1990, 40(3): 509-512.
    [24]
    GIBSON R E, ANDERSON W F. In-situ measurement of soil properties with the pressuremeter[J]. Journal of Near Infrared Spectroscopy, 2007, 18(4): 4-7.
    [25]
    PALMER A C. Undrained plane strain expansion of a cylindrical cavity in clay: a simply interpretation of the pressuremeter test[J]. Géotechnique, 1972, 22(3): 451-457.
    [26]
    汪明元, 单治钢, 王汉武, 等. 一种基于旁压试验确定海洋地层力学参数的方法[J]. 岩石力学与工程学报, 2016, 35(增刊2): 4302-4309.

    WANG Ming-yuan, SHAN Zhi-gang, WANG Han-wu. A method for determinting the mechanical parameters of marine layersusing pressuremeter test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 4302-4309. (in Chinese)
    [27]
    ALZUBAIDI R M. Different results in pressuremeter theories[J]. Geotechnical and Geological Engineering, 2014, 32(4): 965-972.
    [28]
    RANDOLPH M F, FAHEY M. Effect of disturbance on parameters derived from self-boring pressuremeter tests in sand[J]. Géotechnique, 1984, 34(1): 81-97.
    [29]
    BOLTON M D, WHITTLE R W. A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests[J]. Géotechnique, 1999, 49(1): 133-141.
    [30]
    安然, 孔令伟, 黎澄生, 等. 确定残积土原位G-γ衰减曲线的建议方法与适宜性分析[J]. 岩土力学, 2018, 39(12): 4429-4436. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812017.htm

    AN Ran, KONG Ling-wei, LI Cheng-sheng, et al. A proposed method to determine in-situ shear modulus and shear strain decay curves of granite residual soil and its suitability analysis[J]. Rock and Soil Mechanics, 2018, 39(12): 4429-4436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812017.htm
    [31]
    孔令伟, 臧濛, 郭爱国. 湛江黏土动剪切模量的结构损伤效应与定量表征[J]. 岩土工程学报, 2017, 39(12): 2149-2157. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712002.htm

    KONG Ling-wei, ZANG Meng, GUO Ai-guo. Structural damage effect on dynamic shear modulus of Zhanjiang clay and quantitative characterization[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2149-2157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712002.htm
  • Cited by

    Periodical cited type(3)

    1. 石安宁,蒋明镜,王思远,林嘉禹. 基于粒形特征影响的月壤静力学及流动特性离散元研究. 岩土工程学报. 2025(04): 749-758 . 本站查看
    2. 周诚,李浩然,夏一峰,周燕. 离散元法在月面建造力学分析中的研究及应用. 中国粉体技术. 2024(04): 26-42 .
    3. 李佳,王超,李志远,谢欢,蒋明镜,晏雄锋,许雄,冯永玖,童小华. 面向月面原位资源利用的嫦娥五号月壤样品颗粒形态特征研究. 同济大学学报(自然科学版). 2024(08): 1180-1187 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return