• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Qi-jian, WANG Jian-bo, MA Jian-jun, GAO Wen-hua. Vertically-loaded single floating pile in layered soils by thin annulus element method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 748-754. DOI: 10.11779/CJGE201904019
Citation: LIU Qi-jian, WANG Jian-bo, MA Jian-jun, GAO Wen-hua. Vertically-loaded single floating pile in layered soils by thin annulus element method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 748-754. DOI: 10.11779/CJGE201904019

Vertically-loaded single floating pile in layered soils by thin annulus element method

More Information
  • Received Date: April 03, 2018
  • Published Date: April 24, 2019
  • Based on the thin annulus element method and the hypothesis of fictitious soil pile, a model for the settlement of an axially-loaded single floating pile in the layered soils is proposed. The soil column beneath the floating pile is regarded as the fictitious pile shaft. The soil-pile system is then divided into the separate thin-layer elements. The stiffness matrices for the soil element and pile element are deduced using the principle of virtual displacements. The global matrices are constructed by considering the continuity and equilibrium conditions between the elements. The vertical displacement of the soil-pile system can be obtained by solving the matrix equation. The comparisons of the results between the proposed model and the available solutions indicate the accuracy of the proposed model. Parametric study shows that the accuracy of the proposed solution depends greatly on the thickness of the thin annulus element and the choice of the displacement function. For the floating pile in the three-layer soil, the bearing capacity of the middle layer around the shaft increases with the increase of its elastic modulus. The tip stiffness of the floating pile increases with the decrease of the layer thickness between the pile tip and bedrock. When this thickness is less than 0.3 times the soil thickness, the pile tip stiffness will increase significantly. The pile tip stiffness is also dependent greatly on the properties of the underlying soil below the tip of the floating pile.
  • [1]
    SEED H B, REESE L C.The action of soft clay along friction piles[J]. Transactions of the American Society of Civil Engineering, ASCE, 1957, 122(1): 731-754.
    [2]
    KOG Y C.Axially loaded piles in consolidating layered soil[J]. International Journal of Geomechanics, 2016, 16(1): 0415039.
    [3]
    DIAS T, BEZUIJEN A.Load-transfer method for piles under axial loading and unloading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 04017096.
    [4]
    木林隆, 康兴宇, 李婉. 砂土地基中V-H-M 组合荷载下单桩分析方法研究[J]. 岩土工程学报, 2017, 39(增刊2): 153-156.
    (MU Lin-long, KANG Xing-yu, LI Wan.Analytical method for single pile under V-H-M combined loads in sand[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 153-156. (in Chinese))
    [5]
    POULOS H G, DAVIS E H.The settlement behavior of single axially loaded incompressible piles and piers[J]. Géotechnique, 1968, 18(3): 351-371.
    [6]
    RAJAPAKSE R K N D. Response of an axially loaded elastic pile in a Gibson soil[J]. Géotechnique, 1990, 40(2): 237-249.
    [7]
    ZHENG C J, DING X M, LI P, et al.Vertical impedance of an end-bearing pile in viscoelastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(6): 676-684.
    [8]
    TEHRANI F S, SALGADO R, PREZZI M.Analysis of axial loading of pile groups in multilayered elastic soil[J]. International Journal of Geomechanics, 2016, 16(2): 04015063.
    [9]
    WU W B, NAGGER M H E I, ADBLRAHEM M, et al. A new interaction model for the vertical dynamic response of pipe piles considering soil plug effect[J]. Canadian Geotechnical Journal, 2017, 54(7): 987-1001.
    [10]
    RANDOLPH M F, WROTH C P.Analysis of deformation of vertically loaded piles[J]. Journal of Geotechnical Engineering Division, ASCE, 1978, 104(12): 1465-1488.
    [11]
    LEE C Y.Discrete layer analysis of axially loaded piles and pile groups[J]. Computers and Geotechnics, 1991, 11(4): 295-313.
    [12]
    周立朵, 孔纲强. 彭怀风, 等. 倾斜荷载下群桩承载特性理论分析[J]. 岩土力学, 2017, 38(9): 2647-2654.
    (ZHOU Li-duo, KONG Gang-qiang, PENG Huai-feng, et al.Theoretical analysis of bearing capacities of pile group under oblique load[J]. Rock and Soil Mechanics, 2017, 38(9): 2647-2654. (in Chinese))
    [13]
    OTTAVIANI M.Three-dimensional finite element analysis of vertically loaded pile groups[J]. Géotechnique, 1975, 25(2): 159-174.
    [14]
    陈斌, 卓家寿, 吴天寿. 嵌岩桩承载性状的有限元分析[J]. 岩土工程学报, 2002, 24(1): 51-55.
    (CHEN Bin, ZHUO Jia-shou, WU Tian-shou.Vertical bearing capacity of rock-socketed piles[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 51-55. (in Chinese))
    [15]
    AI Z Y, HAN J.Boundary element analysis of axially loaded piles embedded in a multi-layered soil[J]. Computers and Geotechnics, 2009, 36(3): 427-434.
    [16]
    AI Z Y, CHENG Y C.Analysis of vertically loaded piles in multilayered transversely isotropic soils by BEM[J]. Engineering Analysis with Boundary Elements, 2013, 37(2): 327-335.
    [17]
    桩基工程手册编写委员会. 桩基工程手册[M]. 北京: 中国建筑工业出版社, 1995.
    (Compile Committee of Pile Foundation. Pile foundation[M]. Beijing:China Architecture and Building Press, 1995. (in Chinese))
    [18]
    王奎华, 王宁, 刘凯, 等. 三维轴对称条件下基于虚土桩法的单桩纵向振动分析[J]. 岩土工程学报, 2012, 34(5): 885-892.
    (WANG Kui-hua, WANG Ning, LIU Kai, et al.Longitudinal vibration of piles in 3D axisymmetric soil based on fictitious soil pile method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 885-892. (in Chinese))
    [19]
    王宁, 王奎华. 桩底土的成层性对桩体纵向刚度的影响[J]. 岩石力学与工程学报, 2013, 32(5): 1042-1048.
    (WANG Ning, WANG Kui-hua.Influence of layering of stratum under pile tip on pile longitudinal stiffness[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 1042-1048. (in Chinese))
    [20]
    WU W B, LIU H, NAGGER M H E I, et al. Torsional dynamic response of a pile embedded in layered soil based on the fictitious soil pile model[J]. Computers and Geotechnics, 2016, 80: 190-198.
    [21]
    徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2006.
    (XU Zhi-lun.Elasticity[M]. Beijing: Higher Education Press, 2006. (in Chinese))
    [22]
    VLAZOV V Z, LEONTIEV U N.Beams, plates and shells on elastic foundations[M]. Jerusalem: Israel Program for Scientific Translations, 1966.
    [23]
    ANOYATIS G, MYLONAKIS G.Novel Tajimi models for static and dynamic soil-pile interaction[C]// Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011. Leuven, 2011.
    [24]
    RUSSO G.Full-scale load tests on instrumented micropiles[J]. Geotechnical Engineering, 2004, 157(3): 127-135.
  • Cited by

    Periodical cited type(20)

    1. 徐振江,张熙胤,管嘉达,于生生,孙斌洁,张益舶. 冻土层对桩基础铁路重力式桥墩抗震性能的影响研究. 地震工程与工程振动. 2024(01): 225-236 .
    2. 张伟,徐伟忠,陈增. 填方场地水厂结构桩基动力响应三维数值研究. 工程技术研究. 2024(05): 226-228 .
    3. 余佳科,景立平,王展,陆新宇,齐文浩. 桩-土-钢、砼结构动力相互作用试验对比研究. 震灾防御技术. 2024(01): 151-159 .
    4. 上官云翔,陈少林,吕昊,景立平. 软土基础核岛厂房振动台试验数值模拟分析. 地震工程与工程振动. 2024(04): 46-61 .
    5. 刘敬羽,景立平,齐文浩. 桩-土-结构动力相互作用影响因素分析. 地震工程与工程振动. 2024(05): 210-221 .
    6. 刘又恺,梁建文,巴振宁,王永光,马英. 斜入射地震波作用下非基岩场地核电结构地震响应. 地震工程与工程振动. 2024(06): 102-116 .
    7. 徐其. 激振荷载作用下桩基础变形及力学响应特性试验研究. 江西建材. 2024(12): 267-269+272 .
    8. 陆新宇,王展,余佳科,齐文浩. 多向地震对非基岩场地核电厂房动力响应影响研究. 西安建筑科技大学学报(自然科学版). 2023(02): 280-287 .
    9. 孙超群,梁力. 基于强度折减法的桩基础试验与数值计算研究. 水利与建筑工程学报. 2023(03): 132-138 .
    10. 刘永莉,刘志杰,巴军涛,肖衡林,郭斌. 桩承载力反向自平衡试桩法数值模拟分析. 河海大学学报(自然科学版). 2023(04): 81-87 .
    11. 李斌,景立平,王友刚,涂健,齐文浩. 水平低周往复荷载作用下核岛桩基抗震性能试验研究. 岩土工程学报. 2023(10): 2119-2128 . 本站查看
    12. 曹小林,周凤玺,戴国亮,龚维明. 激振荷载作用下桩基础动力响应的现场试验分析. 岩土工程学报. 2023(S1): 171-175 . 本站查看
    13. 陆新宇,景立平,齐文浩,夏峰. 核电厂房群桩地震动力响应振动台试验. 岩土工程学报. 2023(S2): 91-97 . 本站查看
    14. 闫志晓,李雨润,王永志. 砂土场地高承台群桩基础地震响应特征试验研究. 湖南大学学报(自然科学版). 2022(07): 138-147 .
    15. 张熙胤,王万平,于生生,管嘉达,秦训才. 多年冻土区桥梁桩基础抗震性能及影响因素分析. 岩土工程学报. 2022(09): 1635-1643 . 本站查看
    16. 景立平,吴凡,李嘉瑞,汪刚,齐文浩,周中一. 土-桩基-隔震支座-核岛地震反应试验研究. 岩土力学. 2022(09): 2483-2492 .
    17. 陈增,周立业,赵国强,陈锦剑. 高填方场地水池结构振动台试验设计与数值分析. 中国农村水利水电. 2022(09): 49-54 .
    18. 汪刚,景立平,王友刚,涂健,齐文浩. 土性对土–桩–核岛结构动力相互作用影响的试验研究. 岩石力学与工程学报. 2022(11): 2353-2364 .
    19. 汪刚,景立平,陆新宇,齐文浩. 利用振动台试验确定土-桩体系基础频率的方法对比. 地震工程与工程振动. 2022(06): 222-230 .
    20. 陆新宇,景立平,余佳科,王展,齐文浩. 土-桩-钢框架结构动力相互作用特征研究. 震灾防御技术. 2022(04): 643-650 .

    Other cited types(16)

Catalog

    Article views (266) PDF downloads (139) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return