• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAN Chang-bin, JIANG Xiao-di, LIU Zhang-heng, YANG Ji-hua, MIAO Dong. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 466-474. DOI: 10.11779/CJGE201903008
Citation: YAN Chang-bin, JIANG Xiao-di, LIU Zhang-heng, YANG Ji-hua, MIAO Dong. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 466-474. DOI: 10.11779/CJGE201903008

Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus

More Information
  • Received Date: January 28, 2018
  • Published Date: March 24, 2019
  • The shape, particle size and its distribution of rock detritus are the key indexes to reflect the rock-breaking efficiency of TBM, and the important internal link between TBM tunneling parameters and rock properties as well. According to the rock-breaking mechanism of disk cutter, dimension measurements and sieving tests on the rock detritus cut by TBM are carried out, and the dimension characteristics and particle-size distribution of rock detritus are obtained. The statistic analysis and theoretical distribution function fitting are conducted based on the in-situ measured data of dimension and particle-size distribution of rock detritus. The relationships among coarseness index, strength and wear resistance index of rocks are analyzed. The variation laws of coarseness index with tunneling thrust under different surrounding rock classes are discussed. The research results show that the ratio of long axis to short axis of the rock chips is about 1.5, while that of long axis to thickness of the rock chips is quite different for diverse surrounding rocks. The probability distributions of rock chip dimension including long axis, short axis and thickness are subordinate to normal distribution. The particle-size distribution of rock detritus accords with that of Rosin-Rammler function under different rocks. The larger the coarseness index, the higher the rock-breaking efficiency of TBM. The coarseness index of rock detritus decreases with the increase of the uniaxial compressive strength of the rock under hard surrounding rocks, while the change law is contrary for the mid-hard and soft surrounding rocks. The coarseness index of rock detritus decreases with the increase of the wear resistance index of rocks whether the surrounding rocks are hard or soft. The stronger the wear resistance of rocks, the lower the rock-breaking efficiency of TBM. The rock-breaking efficiency of TBM is closely related to the classification of the surrounding rocks. According to the particle-size distribution law of in-situ measured rock detritus, the tunneling thrust intervals when the rock-breaking efficiency of TBM is optimal can be determined under the surrounding rock class II and III.
  • [1]
    BRULAND A.Hard rock tunnel boring[D]. Trondheim: Norwegian University of Science and Technology, 1998.
    [2]
    龚秋明. 掘进机隧道掘进概论[M]. 北京: 科学出版社, 2014.
    (GONG Qiu-ming.Introduction to tunnel boring machine[M]. Beijing: Science Press, 2014. (in Chinese))
    [3]
    SNOWDON R A, RYLEY M D, TEMPORAL J.A study of disc cutting in selected british rocks[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1982, 19(3): 107-121.
    [4]
    张镜剑. TBM的应用及其有关问题和展望[J]. 岩石力学与工程学报, 1999, 18(3): 363-367.
    (ZHANG Jing-jian.The application and some problems of TBM and its prospects[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3): 363-367. (in Chinese))
    [5]
    荆留杰, 张娜, 杨晨. TBM 及其施工技术在中国的发展与趋势[J]. 隧道建设, 2016, 36(3): 331-337.
    (JING Liu-jie, ZHANG Na, YANG Chen.Development of TBM and its construction technologies in China[J]. Tunnel Construction, 2016, 36(3): 331-337. (in Chinese))
    [6]
    CHANG S H, CHOI S W, BAE G J, et al.Performance prediction of TBM disc cutting on granitic rock by the linear cutting test[J]. Tunnelling and Underground Space Technology, 2006, 21(3): 237-249.
    [7]
    徐小荷, 余静. 岩石破碎学[M]. 北京: 煤炭工业出版社, 1984.
    (XU Xiao-he, YU Jing.Rock fragment[M]. Beijing: China Coal Industry Publishing House, 1984. (in Chinese))
    [8]
    孙金山, 卢文波, 苏利军, 等. 基于TBM掘进参数和渣料特征的岩体质量指标辨识[J]. 岩土工程学报, 2008, 30(12): 1847-1854.
    (SUN Jin-shan, LU Wen-bo, SU Li-jun, et al.Rock mass rating identification based on TBM performance parameters and muck characteristics[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1847-1854. (in Chinese))
    [9]
    李苍松, 谷婷, 丁建芳, 等. TBM施工隧洞围岩级别划分探讨[J]. 工程地质学报, 2010, 18(5): 730-735.
    (LI Cang-song, GU Ting, DING Jian-fang, et al.Discussion on rock classification in TBM construction tunnel[J]. Journal of Engineering Geology, 2010, 18(5): 730-735. (in Chinese))
    [10]
    TUNCDEMIR H, BILGIN N, COPUR H, et al.Control of rock cutting efficiency by muck size[J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(2): 278-288.
    [11]
    BALCI C, TUMAC D.Investigation into the effects of different rocks on rock cuttability by a V-type disc cutter[J]. Tunneling and Underground Space Technology, 2012, 30(4): 183-193.
    [12]
    CHO J W, JEON S, JEONG H Y, et al.Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear cutting machine testing and photogrammetric measurement[J]. Tunneling and Under- ground Space Technology , 2013, 35(4): 37-54.
    [13]
    王述红, 王存根, 赵贺兴, 等. 基于岩石破碎体积的滚刀效率评估模型[J]. 东北大学学报(自然科学版), 2016, 37(4): 554-557.
    (WANG Shu-hong, WANG Cun-gen, ZHAO He-xing, et al.Cutter efficiency assessment model based on broken rock volume[J]. Journal of Northeastern University (Natural Science), 2016, 37(4): 554-557. (in Chinese))
    [14]
    ROXBOROUGH F F, RISPIN A.The mechanical cutting characteristics of the lower chalk[J]. Tunnels, 1973(5): 45-67.
    [15]
    龚秋明, 周小雄, 殷丽君, 等. 基于线性切割试验碴片分析的滚刀破岩效率研究[J]. 隧道建设, 2017, 37(3): 363-368.
    (GONG Qiu-ming, ZHOU Xiao-xiong, YIN Li-jun, et al.Study of rock breaking efficiency of TBM disc cutter based on chips analysis of linear cutting test[J]. Tunnel Construction, 2017, 37(3): 363-368. (in Chinese))
    [16]
    陈文莉, 福井胜则, 大久保诚介. 关于掘进机械破碎岩片的研究[J]. 岩石力学与工程学报, 2003, 22(6): 1037-1043.
    (CHEN Wen-li, FUKUI Katsunori, OKUBO Seisuke.Study on the detritus from different excavation machines and methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 1037-1043. (in Chinese))
    [17]
    宋克志, 季立光, 袁大军, 等. 盘形滚刀切割岩碴粒径分布规律研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 3016-3022.
    (SONG Ke-zhi, JI Li-guang, YUAN Da-jun, et al.Research on distribution regularities of grain size of rock detritus from discoid cutters[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S1): 3016-3022. (in Chinese))
    [18]
    GONG Q M, ZHAO J, JIANG Y S.In situ TBM penetration test and rock mass boreability analysis in hard rock tunnels[J]. Tunneling and Underground Space Technology, 2007, 22(3): 303-316.
    [19]
    龚秋明, 佘祺锐, 侯哲生, 等. 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2522-2532.
    (GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al.Experimental study of TBM penetration in marble rock mass under high geo-stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2522-2532. (in Chinese))
    [20]
    AYDIN S M, NUH B.Some contributions on the estimation of performance and operational parameters of raise borers - A case study in Kure Copper Mine, Turkey[J]. Tunnelling and Underground Space Technology, 2016, 54(4): 37-48.
    [21]
    FARROKH E, ROSTAMI J.Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran[J]. Tunnelling and Underground Space Technology, 2008, 23(6): 700-710.
    [22]
    GERTSCH L, FJELD A, NILSEN B, et al.Use of TBM muck as construction material[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 379-402.
    [23]
    GB50487—2008水利水电工程地质勘察规范[S]. 2009.
    (GB50487—2008 Code for geologic investigation of water resources and hydropower engineering[S]. 2009. (in Chinese))
    [24]
    引调水线路工程地质勘察规范[S]. 2014.
    (Code for engineering geological investigation of water diversion route[S]. 2014. (in Chinese))
  • Cited by

    Periodical cited type(22)

    1. 邓龙传,李晓昭,李娟娟,张弛,徐相利,付天池,庄欠伟. 元宝撕裂刀旋转及线性切削性能对比. 应用基础与工程科学学报. 2025(01): 263-272 .
    2. 程桦,谢鲍,姚直书,荣传新,林键. 基于岩渣形貌及岩石磨蚀性的钻井法凿井滚刀磨损评估方法. 煤炭学报. 2025(01): 115-131 .
    3. 袁超,黄煊祺,王卫军,万文,吴海. 预制孔几何参数对盘形刀盘侵岩力学特性影响试验研究. 中国矿业大学学报. 2025(02): 316-329 .
    4. 刘俊峰,陈杜楷,区志钊,邹相荣,凌钧昊,叶梓健. 基于机器学习的TBM破岩效率预测模型研究. 东莞理工学院学报. 2024(01): 103-108 .
    5. 陈昌川,王新立,朱嘉琪,张天骐,尹淑娟,王珩,魏琦,乔飞. 基于卷积神经网络的岩渣分类算法及其FPGA加速. 传感技术学报. 2024(01): 80-88 .
    6. 阎广斌. 基于离散元的凿岩机破岩过程模拟和破岩效率分析. 福建交通科技. 2024(01): 50-55 .
    7. 刘春生,程硕,刘延婷,徐鹏,刘若涵,郝鑫. 碟盘刀具截割姿态倾角与破岩模式特征. 煤炭学报. 2024(02): 1183-1198 .
    8. 周小雄,肖禹航,龚秋明,刘晓丽,刘俊豪,刘东鑫. 基于图像分析的TBM掘进参数与岩碴特征关系研究. 岩土力学. 2024(04): 1142-1153 .
    9. 赵力,苏岩,王博,龚秋明,段庆伟,刘立鹏. 秦岭隧洞花岗岩段掘进机滚刀破岩规律及掘进特征. 人民长江. 2023(04): 170-176 .
    10. 闫长斌,李高留,陈健,李严,杨延栋,杨风威,杨继华. 基于新表面理论的TBM破岩效率评价指标. 岩土力学. 2023(04): 1153-1164 .
    11. 谭昊. 基于特征粒径理论的镶齿滚刀最优钻压分析. 岩土工程学报. 2023(06): 1222-1230 . 本站查看
    12. 翟淑芳,杜红坤,岳奇超,吴帆,龚秋明. 基于特征粒径的盘形滚刀破岩最优贯入度分析. 现代隧道技术. 2023(04): 147-152+162 .
    13. 闫长斌,高子昂,姚西桐,汪鹤健,杨风威,杨继华,卢高明. 考虑不确定性的TBM施工速度加权随机森林预测模型. 岩土工程学报. 2023(12): 2575-2583 . 本站查看
    14. 赵先琼,邓志强,邓朝晖,梅勇兵,夏毅敏. 基于深度学习的TBM密集岩碴片图像分割. 哈尔滨工程大学学报. 2022(03): 399-406 .
    15. 李小军. 城市核心区TBM组装及始发掘进关键技术. 铁道建筑技术. 2022(06): 165-170 .
    16. 韩小鸣,潘福营,朱安平,于庆增,梁飞. 大坡度斜井TBM溜渣试验研究及TBM优化设计. 建筑机械化. 2021(04): 57-60 .
    17. 李青蔚,杜立杰,杨亚磊,刘雷涛,蔡龙,刘金辉. TBM掘进岩渣图像分割与识别方法研究. 隧道建设(中英文). 2021(05): 803-813 .
    18. 汤胜旗,曾亚武,叶阳. 临空面对TBM楔刀贯入破岩效果影响试验研究. 人民长江. 2021(11): 175-182+189 .
    19. 王众乐,赵大铭,严志伟,王若晨,刘大刚. 川藏铁路西藏段沿线弃渣产出及特性分析. 四川建筑. 2021(06): 118-121 .
    20. 谭昊,纪洪广,曾志远,刘志强. 基于硬脆性岩石特征粒径的锥齿滚刀最优钻压分析. 岩土工程学报. 2020(04): 782-789 . 本站查看
    21. 刘建琴,魏琛,郭伟. 基于离散元方法的TBM刀盘磨损研究及优化设计. 铁道工程学报. 2020(09): 85-90 .
    22. 闫长斌,樊明辉,陈馈,杨延栋,张兵,杨继华. 基于岩渣粒径分布规律的TBM刀具消耗分析. 煤炭学报. 2020(12): 4216-4227 .

    Other cited types(20)

Catalog

    Article views (403) PDF downloads (204) Cited by(42)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return