• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Yan-peng, MA Tao, YANG Xiao-hui, YANG Kui-bin, WANG Hai-ming. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87-92. DOI: 10.11779/CJGE2018S1014
Citation: ZHU Yan-peng, MA Tao, YANG Xiao-hui, YANG Kui-bin, WANG Hai-ming. Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 87-92. DOI: 10.11779/CJGE2018S1014

Shear strength tests and regression analysis of red sandstone-improved soils based on orthogonal design

More Information
  • Received Date: June 10, 2017
  • Published Date: August 24, 2018
  • There are more and more deep foundation pits of subway in Lanzhou area. In order to protect the ecological environment and reduce the project cost, after excavation, adding the cement and loess into the red sandstone is used as the roadbed filler through experiments. Based on a subway project in Lanzhou, the compaction tests and the quick shear tests are carried out on the remolded soil with different mixing ratios by adopting orthogonal tests. The influence factors of the shear strength of the red sandstone-improved soil are analyzed, and the best mix proportion of each factor is given. The regression model for shear strength of red sandstone-improved soil is obtained. The test results indicate that the loess has significant influence on the internal friction angle, and the water content and cement have a significant influence on the cohesion. The order of main influence factors of cohesive force can be arranged as follows: cement→water content→loess, and the order of main influence factors of internal friction angle can be arranged as follows: loess→water content→cement. According to the test data of different mix proportions, the regression equation is established to predict the cohesion and internal friction angle of the improved soils. The results have certain reference value for the evaluation of red sandstone as the backfill material.
  • [1]
    赵明华, 邓觐宇, 曹文贵. 红砂岩崩解特性及其路堤填筑技术研究[J]. 中国公路学报, 2003, 16(3): 1-5.
    (ZHAO Ming-hua, DENG Jin-yu, CAO Wen-gui.Study of the disintegration character of red sandstone and the construction techniques of red sandstone embankment[J]. China Journal of Highway and Transport, 2003, 16(3): 1-5. (in Chinese))
    [2]
    赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667-671.
    (ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua.Experimental studies on engineering properties of red bed material containing slacking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667-671. (in Chinese))
    [3]
    董泽福, 刘多文. “红砂岩”的路堤用工程性质研究[J]. 湖南大学学报 (自然科学版), 2003, 30(3): 90-93.
    (DONG Ze-fu, LIU Duo-wen.Study on engineering character of “red rock” for embankment[J]. Journal of Hunan University (Natural Sciences Edition), 2003, 30(3): 90-93. (in Chinese))
    [4]
    刘晓明, 熊力, 张亮亮, 等. I类红砂岩崩解性抑制措施试验研究[J]. 公路交通科技, 2011, 28(3): 25-29.
    (LIU Xiao-ming, XIONG Li, ZHANG Liang-liang, et al.Experiment study on inhibition method of slacking properties of class-I red sand stone[J]. Journal of High and Transportation Research and Development, 2011, 28(3): 25-29. (in Chinese))
    [5]
    杨庆, 贺洁, 栾茂田. 非饱和红黏土和膨胀土抗剪强度的比较研究[J]. 岩土力学, 2003, 24(1): 13-16.
    (YANG Qing, HE Jie, LUAN Mao-tian.Comparative study on shear strength of unsaturated red clay and expansive soils[J]. Rock and Soil Mechanics, 2003, 24(1): 13-16. (in Chinese))
    [6]
    喻泽红, 魏红卫, 邹银生. 加筋红砂岩风化土强度和变形特性[J]. 岩石力学与工程学报, 2005, 24(15): 2770-2779.
    (YU Ze-hong, WEI Hong-wei, ZOU Yin-sheng.Characteristics of shear strength and deformation of reinforced red sand silty clay with geosynthetics[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15): 2770-2779. (in Chinese))
    [7]
    孔令伟, 钟方杰, 郭爱国, 等. 杭州湾浅层储气砂土应力路径试验研究[J]. 岩土力学, 2009, 30(8): 2209-2214.
    (KONG Ling-wei, GUO Fang-jie, GUO Ai-guo.Experimental study of stress path of shallow gassy sand of Hangzhou Bay[J]. Rock and Soil Mechanics, 2009, 30(8): 2209-2214. (in Chinese))
    [8]
    祝艳波, 余宏明, 杨艳霞,等.红层泥岩改良土特性室内试验研究[J]. 岩石力学与工程学报, 2013, 32(2): 425-432.
    (ZHU Yan-bo, YU Hong-ming, YANG Yan-xia, et al.Indoor experimental research on characteristics of improved red-mudstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 425-432. (in Chinese))
    [9]
    甘文宁, 朱大勇, 吴迎雷, 等. 红砂岩细粒土抗剪强度的试验研究[J]. 四川大学学报(工程科学版), 2014, 46(增刊2): 70-75.
    (GAN Wen-ning, ZHU Da-yong, WU Ying-lei, et al.Experimental study on shear strength of sandstone fine-grained soils[J]. Journal of Sichuan University(Engineering Science Edition) 2014, 46(S2): 70-75. (in Chinese))
    [10]
    戎虎仁, 白海波, 王占盛. 不同温度后红砂岩力学性质及微观结构变化规律试验研究[J]. 岩土力学, 2015, 36(2): 463-469.
    (RONG Hu-ren, BAI Hai-bo, WANG Zhan-sheng.Experimental research on mechanical properties and microstructure change law of red sandstone after different temperatures[J]. Rock and Soil Mechanics, 2015, 36(2): 463-469. (in Chinese))
    [11]
    朱彦鹏, 杨校辉, 周勇, 等. 基于含水率和干密度影响的压实土抗剪强度试验[J]. 兰州理工大学学报, 2016, 42(6): 114-120.
    (ZHU Yan-peng, YANG Xiao-hui, ZHOU Yong, et al.Experimental of shear strength of compacted soil when effect of its moisture capacity and dry density being taken into account[J]. Journal of Lanzhou University of Technology, 2016, 42(6): 114-120. (in Chinese))
    [12]
    王浩宇, 许金余, 王鹏, 等. 水-动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861-2868.
    (WANG Hao-yu, XU Jin-yu, WANG Peng, et al.Mechanical properties and energy mechanism of red sandstone under hydro-dynamic coupling effect[J]. Rock and Soil Mechanics, 2016, 37(10): 2861-2868. (in Chinese))
    [13]
    JTG E40—2007 公路土工试验规程[S]TG E40—2007 公路土工试验规程[S]. 北京: 人民交通出版社, 2007.
    (JTG E40—2007 China test methods of soils for highway engineering[S]TG E40—2007 China test methods of soils for highway engineering[S]. Beijing: China Communication Press, 2007. (in Chinese))
  • Related Articles

    [1]LIANG Ming, PENG Hao, XIE Weiwei, HAN Yu, SONG Guanxian, ZHU Menglong, HUANG Nenghao, ZHOU Banghong, LU Zhenlong. Application of automatic interpretation technology of tunnel rock mass integrity based on digital drilling and multi-scale model fusion[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 396-405. DOI: 10.11779/CJGE20221141
    [2]YAN Changbin, GAO Ziang, YAO Xitong, WANG Hejian, YANG Fengwei, YANG Jihua, LU Gaoming. Weighted random forest prediction model for TBM advance rate considering uncertainty[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139
    [3]CAO Rui-lang, WANG Yu-jie, ZHAO Yu-fei, WANG Xiao-gang, HE Sun-wen, PENG Lin-jun. In-situ tests on quantitative evaluation of rock mass integrity based on drilling process index[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 679-687. DOI: 10.11779/CJGE202104010
    [4]RONG Chui-qiang, ZHAO Xiao-hua. Three-dimensional interference sources and optimal sampling location of piles utilizing reflected wave method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1731-1738. DOI: 10.11779/CJGE201709023
    [5]HAN Zeng-qiang, WANG Chuan-ying, ZHOU Ji-fang, WU Yu-teng, HU Sheng, WANG Jin-chao. Calculation of borehole wall rock integrity based on borehole images and its application in evaluation of grouting effect in fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 245-249. DOI: 10.11779/CJGE2016S2040
    [6]TAO Xia-xin, CHEN Fu, SUN Xiao-dan. Improvement of source spectrum model for synthesis of strong ground motion[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 504-507.
    [7]YAN Changgen, WU Faquan, QI Shengwen, LIU Tong, MASAKATSU Miyajima. Deformation and strength parameters and size effect of random jointed rock mass by numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 879-885.
    [8]LI Shaolong, YANG Jinzhong, CAI Shuying. Study on random properties of hydraulic factors in stochastic model of unsaturated flows[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10): 1273-1276.
    [9]CHEN Jianping. 3-D net work numerical modeling technique for random discontinuities of rock mass[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 397-402.
    [10]Guo Huaizhi, Peng Dapeng. Determination of Parameters of Random FieidProperty of Materials[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 79-83.
  • Cited by

    Periodical cited type(7)

    1. 徐长节,管凌霄,童立红,丁海滨. 列车荷载下高铁路基累积沉降研究综述. 华东交通大学学报. 2025(02): 1-14 .
    2. 董俊利,冷伍明,张期树,徐方,李亚峰. 新型预应力路基动力变形特性试验研究. 土木工程学报. 2024(12): 118-131 .
    3. 任连伟,李梁,王自强,邹友峰,顿志林,王树仁. 采空区场地高速铁路路基动力加载系统研发与模型试验. 煤炭学报. 2024(12): 4752-4767 .
    4. 薛凯仁,夏靖洪,刘开富. 循环荷载下桩网复合地基受力变形模型试验研究. 浙江理工大学学报(自然科学版). 2023(01): 157-166 .
    5. 王亚威. 箱式路基端承式复合地基静动力性能室内模型试验研究. 铁道建筑. 2023(10): 107-111 .
    6. 周鹏飞. X型截面现浇混凝土桩在软土上的公路施工性能. 安徽建筑. 2023(12): 150-151+174 .
    7. 陈贤可,刘海涛,吴健,刘开富. 循环荷载下桩网复合地基中桩的承载特性分析. 水利规划与设计. 2022(08): 123-127 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return