• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Chang-sheng, ZHU Zhi-duo. Comparative study on ground loss ratio due to shield tunnel with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265. DOI: 10.11779/CJGE201812013
Citation: WU Chang-sheng, ZHU Zhi-duo. Comparative study on ground loss ratio due to shield tunnel with different diameters[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2257-2265. DOI: 10.11779/CJGE201812013

Comparative study on ground loss ratio due to shield tunnel with different diameters

More Information
  • Received Date: November 14, 2017
  • Published Date: December 24, 2018
  • The ground loss ratio is one of the main factors causing ground surface settlements. The measured data of the maximum ground settlement from some areas of China are collected. The ground loss ratios are obtained through back analysis of Peck formulas. The distribution and influence factors of the ground loss ratio due to large- and small-diameter shield tunnels are studied, respectively. The results show that: (1) About 93.19% of the ground loss ratio caused by small-diameter shield tunnel ranges from 0% to 2.0%, while about 70% of the ground loss ratio due to large-diameter (D>10 m) shield tunnel is 0 %~0.50%. The ground loss ratio owing to large-diameter shield tunnel is smaller, and the distribution is more concentrated compared with that of the small-diameter shield tunnel. (2) The ground loss ratio induced by small-diameter shield tunnel decreases as the soil conditions get better, while the ground loss ratio induced by large-diameter shield tunnel decreases with the decrease of permeability coefficient. (3) There is a certain correlation between the maximum ground settlement and the ground loss ratio, and the control of ground loss ratio resulting from small-diameter shield tunnel in soft soils is the most difficult. (4) The ground loss ratio has no obvious connection with the ratio of cover depth to diameter. (5) The ground loss ratio induced by small-diameter shield tunnel decreases with the increase of the cohesion, internal friction angle and modulus of elasticity. The results can provide scientific references for the prediction and control of ground settlement induced by similar tunnel construction in the future.
  • [1]
    HE C, FENG K, FANG Y, et al.Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University (Science A), 2012, 13(11): 858-869.
    [2]
    马险峰, 王俊淞, 李削云,等. 盾构隧道引起地层损失和地表沉降的离心模型试验研究[J]. 岩土工程学报, 2012, 34(5): 942-947.
    (MA Xian-feng, WANG Jun-song, LI Xiao-yun, et al.Centrifuge modeling of ground loss and settlement caused by shield tunnelling in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 942-947. (in Chinese))
    [3]
    PECK R B.Deep excavations and tunneling in soft ground[C]// Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico, 1969: 225-290.
    [4]
    MAIR R, TAYLOR R, Theme lecture: bored tunnel in the urban environment[C]// Proceeding of the Fourteenth International Conference on Soil mechanics and Foundation Engineering. Hamburg: Balkema, 1997: 2353-238.
    [5]
    LOGANATHAN N, An innovative method for assessing tunnelling-induced risks to adjacent structures[C]// PB 2009 William Barclay Parsons Fellowship Monograph 25. New York: Parsons Brinckerhoff Inc, 2011: 92.
    [6]
    KLAR A, KLEIN B.Energy-based volume loss prediction for tunnel face advancement[J]. Géotechnique, 2014, 64(10): 776-786.
    [7]
    VU M N, BROERE W, BOSCH J W.Volume loss in shallow tunneling[J]. Tunnelling and Underground Space Technology, 2016, 59(10): 77-90.
    [8]
    PALMER A C, MAIR R J.Ground movements above tunnels: a method for calculating volume loss[J]. Canadian Geotechnical Journal, 2011, 48(3): 451-457.
    [9]
    姜忻良, 赵志民, 李园. 隧道开挖引起土层沉降槽曲线形态的分析与计算[J]. 岩土力学, 2004, 25(10): 1542-1544.
    (JIANG Xin-liang, ZHAO Zhi-min, LI Yuan.Analysis and calculation of surface settlement trough profiles due to tunneling[J]. Rock and Soil Mechanics, 2004, 25(10): 1542-1544. (in Chinese))
    [10]
    魏纲. 盾构隧道施工引起的土体损失率取值及分布研究[J]. 岩土工程学报, 2010, 32(9): 1354-1361.
    (WEI Gang.Selection and distribution of ground loss ratio induced by shield tunnel construction[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1354-1361. (in Chinese))
    [11]
    王振信. 盾构施工对环境的影响[J]. 地下工程与隧道, 2008, 22(4): 1-4.
    (WANG Zhen-xin.The environmental impact of shield tunnel construction[J]. Underground Engineering and Tunnels, 2008, 22(4): 1-4. (in Chinese))
    [12]
    O’REILLY M P, NEW B M. Settlements above tunnels in the United Kingdom: their magnitude and prediction[C]// Proc Tunnelling 82, Institution of Mining and Metallurgy. London, 1982: 173-181.
    [13]
    MCCABE B A, ORR T L, REILLY C C.Settlement trough parameters for tunnels in Irish glacial tills[J]. Tunnelling and Underground Space Technology, 2012, 27(1): 1-12.
    [14]
    ZHANG Z X, ZHANG H, YAN J Y.A case study on the behavior of shield tunneling in sandy cobble ground[J]. Environmental Earth Sciences, 2013, 69(6): 1891-1900.
    [15]
    韩煊, 李宁, STANDING J R.Peck公式在我国隧道施工地面变形预测中的适用性分析[J]. 岩土力学, 2007, 28(1): 23-28.
    (HAN Xuan, LI Ning, STANDING J R.An adaptability study of Peck equation applied to predicting ground settlements induced by tunneling in China[J]. Rock and Soil Mechanics, 2007, 28(1): 23-28. (in Chinese))
    [16]
    朱才辉, 李宁. 地铁施工诱发地表最大沉降量估算及规律分析[J]. 岩石力学与工程学报,2017, 36(增刊1): 3543-3560.
    (ZHU Cai-hui, LI Ning.Estimation and regularity analysis of maximal surface settlement induced by subway construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3543-3560. (in Chinese))
    [17]
    朱才辉, 李宁. 隧道施工诱发地表沉降估算方法及其规律分析[J]. 岩土力学, 2016, 38(增刊2): 533-542.
    (ZHU Cai-hui, LI Ning.Estimation method and laws analysis of surface settlement due to tunneling[J]. Rock and Soil Mechanics, 2016, 38(S2): 533-542. (in Chinese))
    [18]
    张忠苗, 林存刚, 吴世明, 等. 泥水盾构施工引起的地面固结沉降实例研究[J]. 浙江大学学报, 2012, 46(3): 431-440.
    (ZHANG Zhong-miao, LIN Cun-gang, WU Shi-ming, et al.Case study of ground surface consolidation settlements induced by slurry shield tunneling[J]. Journal of Zhejiang University, 2012, 46(3): 431-440.(in Chinese))
    [19]
    徐小马. Peck公式在合肥地区的适用性分析及临近既有深基础盾构施工地面沉降研究[D]. 合肥: 合肥工业大学, 2016.
    (XU Xiao-ma.Applicability analysis of Gauss formula in Hefei area and study on the ground subsidence of shield construction near the deep foundation[D]. Hefei: Hefei University of Technology, 2016. (in Chinese))
    [20]
    代朋飞. 合肥地铁盾构法施工引起地表沉降的分析与数值模拟[D]. 合肥: 安徽建筑大学, 2016.
    (DAI Peng-fei.Analysis and numerical simulation on ground settlements caused by shield driven method construction in Hefei Metro[D]. Hefei: Anhui Jianzhu University,2016. (in Chinese))
    [21]
    卢昌龙. 南京地铁隧道盾构法施工地表沉降数值模拟研究[D]. 合肥: 安徽理工大学, 2014.
    (LU Chang-long.Numerical simulation analysis of surface settlement caused by Nanjing subway construction[D]. Hefei: Anhui University of Science and Technology, 2014. (in Chinese))
    [22]
    杨芬. 宁波轨道交通盾构施工引起的长期沉降特性研究[D]. 宁波: 宁波大学, 2015.
    (YANG Fen.Study on the long term settlement characteristics caused by shield construction in Ningbo Rail Transit[D]. Ningbo: Ningbo University, 2015. (in Chinese))
    [23]
    陈枫. 隧道开挖引起地表沉降的解析研究[D]. 上海: 同济大学, 2004.
    (CHEN Feng.Analytical study of ground settlement induced by shield tunnel[D]. Shanghai: Tongji University, 2004. (in Chinese))
    [24]
    王庆. 成都地铁盾构施工对周边环境的影响研究[D]. 成都: 西南交通大学, 2009.
    (WANG Qing.Study on the influence applied to surrounding environment induced by the construction of tunnel of Chengdu metro[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
    [25]
    杨期祥. 成都地铁砂卵石层盾构开挖引起的地表沉降规律分析[D]. 成都: 西南交通大学, 2016.
    (YANG Qi-xiang.Study on the regularity of surface settlement caused by shield tunnel in Chengdu sandy pebble stratum[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese))
    [26]
    白海卫, 宋守信, 王剑晨. Peck 公式在双线盾构隧道施工地层变形中的适应性分析[J]. 北京交通大学学报, 2015, 39(3): 30-34.
    (BAI Hai-wei, SONG Shou-xin, WANG Jian-chen.An adaptability study of Peck formula applied to predicting ground settlements induced by double shield tunneling[J]. Journal of Beijing Jiaotong University, 2015, 39(3): 30-34. (in Chinese))
    [27]
    渠开胜. 软土地层中盾构施工引起地表沉降规律研究[D].杭州: 浙江工业大学, 2014.
    (QU Kai-sheng.Research on the low of ground settlement by shield construction of metro tunnel in soft soil[D]. Hangzhou: Zhejiang University of Technology, 2014. (in Chinese))
    [28]
    唐晓武, 朱季, 刘维, 等. 盾构施工过程中的土体变形研究[J]. 岩石力学与工程学报, 2010, 29(2): 417-422.
    (TANG Xiao-wu, ZHU Ji, LIU Wei, et al.Research on soil deformation during shield construction process[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 417-422. (in Chinese))
    [29]
    颜治国. 西安地铁黄土地层中盾构隧道地表沉降控制理论与技术[D]. 北京: 中国矿业大学, 2012.
    (YAN Zhi-guo.Research on the controlling theory and technology of excavation in loess stratigraphy in Xi'an Metro[D]. Beijing: China University of Mining and Technology, 2012. (in Chinese))
    [30]
    李弈杉. 南宁地铁盾构隧道施工引起的地表沉降规律研究[D]. 南宁: 广西大学, 2016.
    (LI Yi-shan.Study on the law of ground settlement caused by shield tunnel construction in Nanning[D]. Nanning: Guangxi University, 2016. (in Chinese))
    [31]
    徐明辉. 膨胀岩土条件下盾构施工沉降研究[D]. 广州: 暨南大学, 2016.
    (XU Ming-hui.Research on settlement of shield construction in expansion rock and soil[D]. Guangzhou: Jinan University, 2016. (in Chinese))
    [32]
    郑馨, 麻凤海. 长春地层地铁隧道施工的Peck公式改进[J]. 地下空间与工程学报, 2017, 13(3): 732-736.
    (ZHENG Xin, MA Feng-hai.Improvement of Peck Formula in subway construction in Changchun[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(3): 732-736. (in Chinese))
    [33]
    雷国光, 韩飞, 徐丽娜. 富水砾砂层盾构隧道地表沉降及控制措施分析[J]. 吉林建筑大学学报, 2016, 33(1): 39-42.
    (LEI Guo-guang, HAN Fei, XU Li-na.Control measures and settlement of the soil surface caused by shield tunnel in water-rich gravelly sand[J]. Journal of Jilin Jianzhu University, 2016, 33(1): 39-42. (in Chinese))
    [34]
    杨三资, 张顶立, 王剑晨, 等. 北京黏性土地层大直径土压平衡盾构施工地层变形规律研究[J]. 土木工程学报, 2015, 48(增刊1): 297-301.
    (YANG San-zi, ZHANG Ding-li, WANG Jian-chen, et al. Ground deformation characteristic due to large diameter slurry shield construction in clay in Beijing[J]. China Civil Engineering Journal, 2015, 48(S1): 297-301. ( in Chinese))
    [35]
    郭玉海. 大直径土压平衡盾构引起的地表变形及掘进控制技术研究[D]. 北京: 北京交通大学, 2014.
    (GUO Yu-hai.Study on big diameter earth pressure balance shield tunneling induced ground surface movements and corresponding driving control technologies[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese))
    [36]
    秦世朋. 大直径泥水盾构隧道施工地层响应分析[D]. 北京: 北京交通大学, 2015.
    (QIN Shi-peng.Analysis of ground response induced by large slurry shield tunne[D]. Beijing: Beijing Jiaotong Uiversity, 2015. (in Chinese))
    [37]
    LIN C G, ZHANG Z M, WU S M, et al.Key techniques and important issues for slurry shield under-passing embankments: a case study of Hangzhou Qiantang River Tunnel[J]. Tunneling and Underground Space Technology, 2013, 38(9): 306-325.
    [38]
    侯永茂, 郑宜枫, 杨国祥, 等. 超大直径土压平衡盾构施工对环境影响的现场测研究[J]. 岩土力学, 2013, 34(1): 235-242.
    (HOU Yong-mao, ZHENG Yi-feng, YANG Guo-xiang, et al.Measurement and analysis of ground settlement due to EPB shield construction[J]. Rock and Soil Mechanics, 2013, 34(1): 235-242. (in Chinese))
    [39]
    李庭平. 影响泥水平衡盾构施工中变形的因素分析及其对既有隧道影响的分析[D]. 上海: 上海交通大学, 2008.
    (LI Ting-ping.Analysis of deformation factors during construction of slurry type shield tunnels with the effects on existing metro tunnel[D]. Shanghai: Shanghai Jiaotong University, 2008. (in Chinese))
    [40]
    伍振志, 杨国祥, 杨林德, 等. 上海长江隧道过民房段地表变位预测及控制研究[J]. 岩土力学, 2010, 31(2): 582-587.
    (WU Zhen-zhi, YANG Guo-xiang, YANG Lin-de, et al.Prediction and control of ground movement of Shanghai Yangtze River tunneling across building areas[J]. Rock and Soil Mechanics, 2010, 31(2): 582-587. (in Chinese))
    [41]
    程磊标, 陈有亮, 王苏然, 等. 超大直径盾构施工地表沉降分析[J]. 水资源与水工程学报, 2017, 28(1): 226-229.
    (CHENG Lei-biao, CHEN You-liang, WANG Su-ran et al. Analysis of ground surface settlement induced by the super diameter shield construction[J]. Journal of Water Resources and Water Engineering, 2017, 28(1): 226-229. (in Chinese))
    [42]
    马可栓. 盾构施工引起地基移动与近邻建筑保护研究[D]. 武汉: 华中科技大学, 2008.
    (MA Ke-shuan.Research on the ground settlement caused by the shield construction and protection[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese))
    [43]
    季大雪. 武汉长江隧道盾构下穿武九铁路沉降影响分析[J]. 铁道工程学报, 2009, 26(10): 59-63.
    (JI Da-xue.Analysis of the influence of underpass shield of Wuhan Yangtze River tunnel on settlement of Wuhan-Jiujiang railway[J]. Journal of Railway Engineering Society, 2009, 26(10): 59-63. (in Chinese))
    [44]
    李国成, 丁烈云. 武汉长江隧道盾构施工引起的地表沉降预测[J]. 铁道工程学报, 2008, 25(5): 59-62.
    (LI Guo-cheng, DING Lie-yun.Ground Settlement Induced by Shield Construction of Wuhan Yangtze River Tunnel[J]. Journal of Railway Engineering Society, 2008, 25(5): 59-62. (in Chinese))
    [45]
    肖衡. 大直径泥水盾构掘进对土体的扰动研究[D]. 北京: 北京交通大学, 2009.
    (XIAO Heng.Study on soil disturbance caused by large diameter slurry shield tunneling[D]. Beijing: Beijing Jiaotong University, 2009. (in Chinese))
    [46]
    梅逸飞. 盾构法施工隧道监测监控技术研究[D]. 武汉: 武汉理工大学, 2013.
    (MEI Yi-fei.Research on monitoring technology in shield tunnel construction[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese))
    [47]
    房倩, 王剑晨, 刘翔, 等. 超大直径泥水式盾构施工地层变形规律研究[J]. 现代隧道技术, 2017, 54(3): 120-125.
    (FANG Qian, WANG Jian-chen, LIU Xiang, et al.Characteristics of ground deformation induced by large-diameter slurry shield construction[J]. Modern Tunnelling Technology, 2017, 54(3): 120-125. (in Chinese))
    [48]
    戴洪伟. 瘦西湖超大直径盾构隧道施工对周边环境影响分析[J]. 隧道建设, 2015, 35(4): 316-321.
    (DAI Hong-wei.Influence of super-large diameter shield tunneling on surrounding environment: case study on Slender West Lake crossing tunnel in Yangzhou, China[J]. Tunnel Construction, 2015, 35(4): 316-321. (in Chinese))
    [49]
    陈健. 扬州瘦西湖盾构隧道施工关键技术与实测分析[J]. 建筑施工, 2015, 37(3): 361-364.
    (CHEN Jian.Key technology and actual measurement analysis of shield tunnel Construction of Yangzhou Slender West Lake[J]. Building Construction, 2015, 37(3): 361-364. (in Chinese))
    [50]
    杨延栋, 陈馈, 李凤远, 等. 狮子洋隧道陆地段盾构施工横向地表沉降研究[J]. 隧道建设, 2014, 34(12): 1143-1147.
    (YANG Yan-dong, CHEN Kui, LI Feng-yuan, et al.Case study on transverse ground surface settlement of land section of shiziyang tunnel bored by shield[J]. Tunnel Construction, 2014, 34(12): 1143-1147. (in Chinese))
    [51]
    羌培. 超大直径土压平衡盾构最佳施工参数匹配研究[D]. 上海: 上海大学, 2015.
    (QIANG Pei.The research of perfect matching of tunneling parameter for super large diameter earth pressure balance machine[D]. Shanghai: Shanghai University, 2015. (in Chinese))
  • Cited by

    Periodical cited type(5)

    1. 唐清枫,徐真,孙亚楼,张奇,谭琪,潘多强,吴王锁. 黏土矿物-生物复合胶体影响放射性核素迁移行为与机理研究进展. 核化学与放射化学. 2025(01): 1-16 .
    2. 吴鹏,王驹,凌辉,周志超,段佳欣,李南,段先哲. 甘肃北山新场深部地下水中铀的赋存形态及其影响因素的地球化学模拟研究. 原子能科学技术. 2024(05): 1007-1016 .
    3. 田云婷,谭凯旋,李咏梅,李春光,唐治鹏,李小杰. 还原条件下膨润土胶体稳定性研究. 南华大学学报(自然科学版). 2024(03): 47-52 .
    4. 邹威燕,周书葵,段毅. 不同地层中放射性核素迁移模型. 有色金属(冶炼部分). 2022(01): 79-87 .
    5. 朱帅润,李绍红,何博,吴礼舟. 改进的Picard法在非饱和土渗流中的应用研究. 岩土工程学报. 2022(04): 712-720 . 本站查看

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return