• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Yuan-hai, TANG Xiao-jie. Fast analysis method for DSCM based on spatiotemporally non-uniform deformation characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1610-1618. DOI: 10.11779/CJGE201809006
Citation: LI Yuan-hai, TANG Xiao-jie. Fast analysis method for DSCM based on spatiotemporally non-uniform deformation characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1610-1618. DOI: 10.11779/CJGE201809006

Fast analysis method for DSCM based on spatiotemporally non-uniform deformation characteristics of geotechnical materials

More Information
  • Received Date: September 06, 2017
  • Published Date: September 24, 2018
  • The deformation of geotechnical materials under the external loads generally non-uniformly varies with time and distribution. However, the search radius or search range is conventionally invariable with all the experimental images analyzed through the whole process, as well as with the measuring points in one picture. The relevant search of the image pixels in such a case is conventionally conducted based on DSCM during the basic mechanical experiment and the model experiment research of the geotechnical materials, which is too straightforward to be efficient. In order to solve this problem, a new method named PDSS which can adjust the search range is proposed to increase the efficiency. This method starts with the measurement of grid displacement covering the whole scope of analysis. The separation distance of grids is comparatively large, and the statistics are gained through the conventional search method during this period. Then, what we acquired first will be used for the analysis of measuring points. Finally, the search range of any point will be fixed with the maximum displacement of the reference element node. Such a range can be adapted for the deformation of measuring points. Essentially, the efficiency of analysis is improved through reducing the number of pixels when the PDSS is applied. As is shown from the experimental results, the analysis speed can be increased by more than 10 times. PDSS can be used to solve the problem of fast DSCM analysis for rock and soil materials with spatial and temporal heterogeneity. The research results can further improve the application level of DSCM in experimental studies of geotechnical engineering.
  • [1]
    李元海, 靖洪文, 刘刚, 等. 数字照相量测在岩石隧道模型试验中的应用研究[J]. 岩石力学与工程学报, 2007, 26(8): 1684-1690.
    (LI Yuan-hai, JING Hong-wen, LIU Gang, et al.Study on application of digital close range photogrammetry to model test of tunnel in jointed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1684-1690. (in Chinese))
    [2]
    王怀文, 亢一澜, 谢和平. 数字散斑相关方法与应用研究进展[J]. 力学进展, 2005, 35(2): 195-203 (WANG Huai-wen, KANG Yi-lan, XIE He-ping, Advantage in digital speckle correlation method and its application[J]. Advances in Mechanics, 2005, 35(2):195-203. (in Chinese))
    [3]
    TAKE W A.Thirty-sixth Canadian geotechnical colloquium: advances in visualization of geotechnical processes through digital image correlation[J]. Canadian Geotechnical Journal, 2015, 52(9): 1199-1220.
    [4]
    MURRAY C A, TAKE W A, HOULT N A.Measurement of vertical and longitudinal rail displacements using digital image correlation[J]. Canadian Geotechnical Journal, 2014, 52(2): 1-15
    [5]
    赵永红, 王航, 张琼, 等. 用数字相关方法研究滑坡变形场[J]. 科学通报, 2016, 61(增刊): 3163-3171.
    (ZHAO Yong-hong, WANG Hang, ZHANG Qiong, et al.A study of landslide deformation field with digital correlation method[J]. Chinese Science Bulletin, 2016, 61(S0): 3163-3171. (in Chinese))
    [6]
    马永尚, 陈卫忠, 杨典森, 等. 基于3D-DIC技术的脆性岩石破坏试验研究[J]. 岩土力学, 2017, 38(1): 117-123.
    (MA Yong-shang, CHEN Wei-zhong, YANG Dian-sen, et al.Experimental study of brittle rock failure based on three-dimensional digital image correlation technique[J]. Rock and Soil Mechanics, 2017, 38(1): 117-123. (in Chinese))
    [7]
    李元海, 靖洪文, 曾庆有. 岩土工程数字照相量测软件系统研发与应用[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3859-3866.
    (LI Yuan-hai, JING Hong-wen, ZENG Qing-you.Development and application of digital photogrammetry software package for geotechnical experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3859-3866. (in Chinese))
    [8]
    ZHU H M, HU L L.Displacement measurement using digital speckle multi-frequency harmonic wave correlation method[J]. Measurement, 2016, 89: 7-12.
    [9]
    芮嘉白, 金观昌, 徐秉业. 一种新的数字散斑相关方法及其应用[J]. 力学学报, 1994, 26(5): 599-607.
    (RUI Jia-bai, JIN Guan-chang, XU Bin-ye.A new digital speckle correlation method and its application[J]. Acta Mechanica Sinica, 1994, 26(5): 599-607. (in Chinese)
    [10]
    王昊, 马志峰. 预测搜索算法在图像相关中的应用[J]. 光学技术, 2013, 39(3): 251-255.
    (WANG Hao, MA Zhi-feng.An improvement of digital speckle correlation method using the predictive search algorithm[J]. Optical Technique, 2013, 39(3): 251-255. (in Chinese))
    [11]
    王宜庚. 极值搜索法在数字相关性计算中的应用[J]. 解放军理工大学学报(自然科学版), 2004, 5(2): 100-102.
    (WANG Yi-geng.Application of minimum searching method to calculation of digital speckles correlation[J]. Journal of PLA University of Science and Technology, 2004, 5(2): 100-102. (in Chinese))
    [12]
    葛宇龙, 李晓星. 多种群遗产算法在数字散斑相关搜索中的应用[J]. 工程与试验, 2013, 53(3): 6-8.
    (GE Yu-long, LI Xiao-xing.Application of multi-population genetic algorithm to digital speckle correlation method[J] Engineering & Tset, 2013, 53(3): 6-8. (in Chinese))
    [13]
    李元海, 林志斌, 靖洪文, 等. 含动态裂隙岩体的高精度数字散斑相关量测方法[J]. 岩土工程学报, 2012, 34(6): 1060-1068.
    (LI Yuan-hai, LIN Zhi-bin, JING Hong-wen, et al.High-accuracy digital speckle correlation method for rock with dynamic fractures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1060-1068. (in Chinese))
    [14]
    李元海, 贾冉旭, 杨苏. 基于岩土渐进变形特征的数字散斑相关优化分析法[J]. 岩土工程学报, 2015, 37(8): 1490-1496.
    (LI Yuan-hai, JIA Ran-xu, YANG Su.Optimized method for DSCM based on progressive displacement characteristics of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1490-1496. (in Chinese))
    [15]
    马少鹏, 赵永红, 金观昌, 等. 光测方法在岩石力学实验观测中的应用述评[J]. 岩石力学与工程学报, 2005, 24(10): 1794-1799.
    (MA Shao-peng, ZHAO Yong-hong, JIN Guan-chang, et al.Review on application of optical measurement methods to experimental inspection of rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1794-1799. (in Chinese))
    [16]
    李元海. 数字照相量测技术及其在岩土工程实验中的应用[M]. 徐州: 中国矿业大学出版社, 2009.
    (LI Yuan-hai.Digital photogrammetry-based deformation measurement technique and its application in geotechnical engineering test[M]. Xuzhou: China University of Mining and Technology Press, 2009. (in Chinese))
    [17]
    刘招伟, 李元海. 含孔洞岩石单轴压缩下变形破裂规律的实验研究[J]. 工程力学, 2010, 27(8): 133-139.
    (LIU Zhao-wei, LI Yuan-hai.Experimental investigation on the deformation and crack behavior of rock specimen with a hole undergoing uniaxial compressive load[J]. Engineering Mechanics, 2010, 27(8): 133-139. (in Chinese))
    [18]
    LI Y H, ZHANG Q, LIN Z B, et al.Spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway with model experiments[J]. International Journal of Mining Science and Technology, 2016(26): 985-902.
    [19]
    李元海, 朱合华, 上野胜利, 等. 基于图像相关分析的砂土实验模型变形场量测[J]. 岩土工程学报, 2004, 26(1):36-41.
    (LI Yuan-hai, ZHU He-hua, UENO K, et al.Deformation field measurement for granular soil model using image analysis[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 36-41. (in Chinese))
  • Related Articles

    [1]XIN Gong-feng, ZHOU Hai-zuo, ZHANG Wen-liang, ZHENG Gang, YANG Xin-yu, YU Xiao-xuan, XU Shi-qian. Influences of column cap on progressive failure and stability characteristics of column-supported embankments[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 63-67. DOI: 10.11779/CJGE2022S1012
    [2]ZHANG Jiang-wei, LI Xiao-jun, WANG Xiao-ming, CHI Ming-jie, WANG Yu-shi. Method for judging seismic stability state of soil slopes[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2096-2102. DOI: 10.11779/CJGE201811016
    [3]ZHAO Ming-hua, XIA Run-yan, YIN Ping-bao, YANG Chao-wei, XU Zhuo-jun. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005-1011. DOI: 10.11779/CJGE201406003
    [4]WANG Zhe, ZHUANG Yingchun. Analytical analysis of vertical load-transfer of large-diameter cast-in-situ concrete tubular piles[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1488-1492.
    [5]LOU Xiaoming, SUN Xiaofeng. Analysis on load transfer for large area composite foundation with rigid piles and cushions[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2027-2030.
    [6]ZHANG Fan, GONG Weiming, DAI Guoliang. Experimental research on the load transfer mechanism of super-long large diameter bored pile with the self-balanced load test method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 464-469.
    [7]WANG Zhe, ZHOU Jian, GONG Xiaonan. Analysis of axial load-transfer of large-diameter tubular pile using cast-in-situ concrete[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1185-1189.
    [8]HAN Xuan, ZHANG Nairui. In-situ tests on load transfer mechanism of group piled foundation in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 74-80.
    [9]Zhang Huiming, Zeng Qiaoling. Steady state strength of sand:concepts and experiment[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(2): 95-100.
    [10]Liu Songyu, Ji Peng, Wei Jie. Load transfer behavior of large diameter cast in place pile embedded in soft rock[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 61.
  • Cited by

    Periodical cited type(3)

    1. 刘鑫,董广阳,史旦达. 考虑颗粒破碎的砂土中鱼雷锚贯入离散元分析. 水文地质工程地质. 2024(01): 91-101 .
    2. 叶尖峰,韩聪聪,刘君. 组合动力锚水动力特性数值模拟研究. 海洋工程. 2023(01): 39-47 .
    3. 胡伟,王辉,姚琛,郝冬雪,史旦达. 砂土中水平矩形锚板竖向拉拔承载全域内三维统一力学模型与承载力计算方法研究. 岩土力学. 2023(06): 1811-1825 .

    Other cited types(5)

Catalog

    Article views (276) PDF downloads (168) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return