• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Zhen, ZHU Shu-yun, ZHAO Kui, LI Xiao-zhao, WU Rui, WANG Ying-chao, WANG Xiao-jun. Influences of structural variation of host rock induced by engineering activities on water inrush of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 449-458. DOI: 10.11779/CJGE201803008
Citation: HUANG Zhen, ZHU Shu-yun, ZHAO Kui, LI Xiao-zhao, WU Rui, WANG Ying-chao, WANG Xiao-jun. Influences of structural variation of host rock induced by engineering activities on water inrush of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 449-458. DOI: 10.11779/CJGE201803008

Influences of structural variation of host rock induced by engineering activities on water inrush of tunnels

More Information
  • Received Date: November 30, 2016
  • Published Date: March 24, 2018
  • Water inrush disasters have become a serious problem resulting from the current trend that numerous traffic roads and hydropower tunnels are constructed, and minerals are mined in deep underground. The variation of rock structures induced by engineering activities has great influences on the mechanical and hydraulic properties of the host rock, and the seepage fields around tunnels. The theoretical analysis method is employed to investigate the influences of the structure variation of rock on the groundwater inflow rate and pore water distribution based on the damage and permeability evolutions of host rock induced by engineering disturbance. The results show that the influences of the thickness of the damage zone on the pore water distribution and the groundwater inflow rate are significant. The risk of water inrush increases with the increase of the thickness of the damage zone. The influences of the hydraulic conductivity on the pore water distribution and the groundwater inflow rate are weak if more than two orders of magnitude increase in hydraulic conductivity of damaged zone. The inflow rate decreases with the increase of the thickness of grouting circle and the decrease of its hydraulic conductivity. However, there is a best design value for the thickness and permeability of the grouting circle, rather than the effect of greater thickness and lower permeability of the grouting circle.
  • [1]
    READ R S.20 years of excavation response studies at AECL's Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1251-1275.
    [2]
    吉小明. 隧道开挖的围岩损伤扰动带分析[J]. 岩石力学与工程学报, 2005, 24(10): 1697-1702.
    (JI Xiao-ming.Study on mechanical and hydraulic behavior of tunnel surrounding rock masses in excavation-disturbed zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(10): 1697-1702. (in Chinese))
    [3]
    黄震, 姜振泉, 孙强, 等. 深部巷道底板岩体渗透性高压压水试验研究[J]. 岩土工程学报, 2014, 36(8): 1535-1543.
    (HUANG Zhen, JIANG Zhen-quan, SUN Qiang, et al.High-pressure water injection tests on permeability of deep rock mass under tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1535-1543. (in Chinese))
    [4]
    贾善坡, 高敏, 龚俊, 等. 渗流-应力耦合作用下高孔低渗泥岩渗透特性演化模型[J]. 应用基础与工程科学学报, 2015, 23(6): 1221-1235.
    (JIA Shan-po, GAO Min, GONG Jun, et al.Permeability evolution model for clay stone with high porosity and low permeability in coupled hydro-mechanical condition[J]. Journal of Basic Science and Engineering, 2015, 23(6): 1221-1235. (in Chinese))
    [5]
    李利平, 路为, 李术才, 等. 地下工程突水机理及其研究最新进展[J]. 山东大学学报(工学版), 2010, 40(3): 104-112.
    (LI Li-ping, LU Wei, LI Shu-cai, et al.Research status and developing trend analysis of the water inrush mechanism for underground engineering construction[J]. Journal of Shandong University (Engineering Science), 2010, 40(3): 104-112. (in Chinese))
    [6]
    KELSALL P C, CASE J B, CHABANNES C R.Evaluation of excavation-induced changes in rock permeability[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1984, 21(3): 123-135.
    [7]
    MARTINO J B, CHANDLER N A.Excavation-induced damage studies at the Underground Research Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1413-1426.
    [8]
    BAECHLER S, LAVANCHY J M, ARMAND G, et al.Characterisation of the hydraulic properties within the EDZ around drifts at level -490m of the Meuse/Haute-Marne URL: a methodology for consistent interpretation of hydraulic tests[J]. Physics and Chemistry of the Earth Parts, 2011, 36: 1922-1931.
    [9]
    姜振泉, 季梁军, 左如松, 等. 岩石在伺服条件下的渗透性与应变、应力的关联性特征[J]. 岩石力学与工程学报, 2002, 21(10): 1442-1446.
    (JIANG Zhen-quan, JI Liang-jun, ZUO Ru-song, et al.Correlativity among rock permeability and strain, stress under servo-control condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1442-1446. (in Chinese))
    [10]
    孙强, 姜振泉, 朱术云. 北皂海域煤矿顶板软岩试样渗透性试验研究[J]. 岩土工程学报, 2012, 34(3): 540-545.
    (SUN Qiang, JIANG Zhen-quan, ZHU Shu-yun.Expermental study on permeability of soft rock of Beizao Coal Mine[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 540-545. (in Chinese))
    [11]
    胡少华, 陈益峰, 周创兵. 北山花岗岩渗透特性试验研究与细观力学分析[J]. 岩石力学与工程学报, 2014, 33(11): 2200-2209.
    (HU Shao-hua, CHEN Yi-feng, ZHOU Chuang-bing.Laboratory test and mesomechanical analysis of permeability variation of Beishan Granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2200-2209. (in Chinese))
    [12]
    韩国锋, 王恩志, 刘晓丽. 岩石损伤过程中的渗流特性[J]. 土木建筑与环境工程, 2011, 33(5): 41-50.
    (HAN Guo-feng, WANG En-zhi, LIU Xiao-li.Seepage characteristics of rock during damage process[J]. Journal of Civil Architectural & Environmental Engineering, 2011, 33(5): 41-50. (in Chinese))
    [13]
    王伟, 郑志, 王如宾, 等. 不同应力路径下花岗片麻岩渗透特性的试验研究[J]. 岩石力学与工程学报, 2016, 35(2): 260-267.
    (WANG Wei, ZHENG Zhi, WANG Ru-bin, et al.Experimental study of permeability properties of granitic gneiss under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 260-267. (in Chinese))
    [14]
    朱泽奇, 盛谦, 张勇慧, 等. 大岗山水电站地下厂房洞室群围岩开挖损伤区研究[J]. 岩石力学与工程学报, 2013, 32(4): 734-739.
    (ZHU Ze-qi, SHENG Qian, ZHANG Yong-hui, et al.Research on excavation damage zone of underground powerhouse of Dagangshan Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 734-739. (in Chinese))
    [15]
    WILEVEAU Y, BERNIER F.Similarities in the hydromechanical response of Callovo-Oxfordian clay and Boom clay during gallery excavation[J]. Physics and Chemistry of the Earth Parts, 2008, 33: S343-S349.
    [16]
    LI X.TIMODAZ: A successful international cooperation project to investigate the thermal impact on the EDZ around a radioactive waste disposal in clay host rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2013, 5: 231-242.
    [17]
    BOSSART P, MAYOR J C, MEIER P M, et al.Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus clay of the Mont Terri Rock Laboratory[J]. Engineering Geology, 2002, 66: 19-38.
    [18]
    KAISER P K, MCCREATH D R, TANNANT D D.Canadian rockburst support handbook[M]. Sudbury: CAMIRO, 1996.
    [19]
    MARTIN C D, KAISER P K, MCCREATH D R.Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal, 1999, 36(1): 136-151.
    [20]
    蔡明, 赵星光, KAISER P K.论完整岩体的现场强度[J]. 岩石力学与工程学报, 2014, 33(1): 1-13.
    (CAI Ming, ZHAO Xing-guang, KAISER P K.On field strength of massive rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 1-13. (in Chinese))
    [21]
    PUSCH R.Alteration of the hydraulic conductivity of rock by tunnel excavation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(1): 79-83.
    [22]
    SOULEY M, HOMAND F, PEPA S, et al.Damage-induced permeability changes in granite: a case example at the URL in Canada[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 297-310.
    [23]
    TSANG C F, BERNIER F, DAVIES C.Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays in the context of radioactive waste disposal[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 109-125.
    [24]
    SHAO H, SCHUSTER K, SONNKE J, et al.EDZ development in indurated clay formations: in situ borehole measurements and coupled HM modelling[J]. Physics and Chemistry of the Earth, 2008, 33(S1): S388-S395.
    [25]
    LEVASSEUR S, CHARLIER R, FRIEG B, et al.Hydro-mechanical modelling of the excavation damaged zone around an underground excavation at Mont Terri Rock Laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 414-425.
    [26]
    房倩, 张顶立, 黄明琦. 基于连续介质模型的海底隧道渗流问题分析[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3776-3784.
    (FANG Qian, ZHANG Ding-li, HUANG Ming-qi.Analysis of seepage problem induced by subsea tunnel excavation based on continuum medium model[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3776-3784. (in Chinese))
    [27]
    王建秀, 朱合华, 叶为民. 隧道涌水量的预测及其工程应用[J]. 岩石力学与工程学报, 2004, 23(7): 1150-1153.
    (WANG Jian-xiu, ZHU He-hua, YE Wei-min.Forward and inverse analyses of water flow into tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(7): 1150-1153. (in Chinese))
    [28]
    李术才, 赵岩, 徐帮树, 等. 海底隧道涌水量计算的渗透系数确定方法[J]. 岩土力学, 2012, 33(5): 1497-1505.
    (LI Shu-cai, ZHAO Yan, XU Bang-shu, et al.Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. Rock and Soil Mechanics, 2012, 33(5): 1497-1505. (in Chinese))
    [29]
    杜朝伟. 海底隧道衬砌水压力及结构受力特征研究[D]. 北京: 北京交通大学, 2011.
    (DU Chao-wei.Research on water pressure on lining and the stress characteristics of lining structure of subsea tunnel[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese))
    [30]
    张有天. 岩石水力学与工程[M]. 北京: 中国水利水电出版社, 2005.
    (ZHANG You-tian.Rock hydraulics and engineering[M]. Beijing: China Water and Power Press, 2005. (in Chinese))
    [31]
    KOLYMBAS D, WAGNER P.Groundwater ingress to tunnels: the exact analytical solution[J]. Tunnelling and Underground Space Technology, 2007, 22(1): 23-27.
    [32]
    HARR M E.Groundwater and seepage[M]. New York: McGraw-Hill, 1962.
    [33]
    HEUER R.Estimating rock tunnel water inflow-II[C]// Proceeding of Rapid Excavation and Tunnelling Conference. Seattle, 2005.
    [34]
    FERNANDEZ G, MOON J.Excavation-induced hydraulic conductivity reduction around a tunnel: part 1 Guideline for estimate of ground water inflow rate[J]. Tunnelling and Underground Space Technology, 2010, 25: 560-566.
    [35]
    FERNANDEZ G, ALVAREZ T A.Seepage-induced effective stresses and water pressures around pressure tunnels[J]. Journal of Geotechnical Engineering, 1994, 120(1): 108-128.
    [36]
    张成平, 张顶立, 王梦恕, 等. 高水压富水区隧道限排衬砌注浆圈合理参数研究[J]. 岩石力学与工程学报, 2007, 26(11): 2270-2276.
    (ZHANG Cheng-ping, ZHANG Ding-li, WANG Meng-shu, et al.Study on appropriate parameters of grouting circle for tunnels with limiting discharge ling in high water pressure and water-enriched region[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2270-2276. (in Chinese))
    [37]
    李鹏飞, 张顶立, 赵勇, 等. 海底隧道复合衬砌水压力分布规律及合理注浆加固圈参数研究[J]. 岩石力学与工程学报, 2012, 31(2): 280-288.
    (LI Peng-fei, ZHANG Ding-li, ZHAO Yong, et al.Study on distribution law of water pressure acting on composite lining and reasonable parameters of grouting circle for subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 280-288. (in Chinese))
  • Cited by

    Periodical cited type(43)

    1. 罗桂桃. 降雨-蒸发作用下膨胀土边坡渗流稳定性分析. 煤炭技术. 2025(02): 130-134 .
    2. 蒋水华,元志镕,刘贤,黄劲松,周创兵. 考虑过渡层多层空间变异性的边坡降雨入渗模型及稳定性分析应用. 岩土工程学报. 2025(02): 255-264 . 本站查看
    3. 元志镕,蒋水华,常志璐,向晖,刘玉伟,黄劲松. 考虑初始含水率非均匀分布及孔隙水重分布的边坡可靠度分析. 岩土力学. 2025(03): 1001-1012 .
    4. 沈才华,王业钊,蒋新宇,蔡丹丹,于瀚森. 空间变异性蠕变地层中综合管廊变形安全可靠度预测. 武汉大学学报(工学版). 2024(03): 302-310 .
    5. 苏文煊,陈焕美,程谞. 开挖降雨作用下边坡抗滑桩主动加固离心模型试验研究. 交通科技. 2024(02): 32-37 .
    6. 柳伟,徐长节,胡世韬,朱怀龙. 降雨和库水位升降条件下考虑非饱和渗透系数空间变异的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(03): 61-72 .
    7. 蒋水华,刘贤,黄劲松,周创兵. 多层非均质边坡降雨入渗分析的改进Green-Ampt模型. 岩土工程学报. 2024(06): 1177-1186 . 本站查看
    8. 王勤,阎龙,张海莹,刘利骄,柳艳杰. 基于随机场理论的隧道开挖后地表及隧道变形分析. 人民长江. 2024(07): 229-239+253 .
    9. 姚腾飞,徐跃冰,韩函,王璨. 降雨条件下湖南省红层地区浅层土坡失稳机理研究. 钻探工程. 2024(04): 101-110 .
    10. 田华明,李典庆. 勘察数据变化条件下空间变异土坡稳定可靠度协同更新方法. 岩土工程学报. 2024(08): 1613-1621 . 本站查看
    11. 徐杰,李湛. 非饱和土瞬态渗流无限边坡稳定性研究. 低温建筑技术. 2024(06): 87-90 .
    12. 周家文,陈明亮,瞿靖昆,胡宇翔,夏茂圃,蒋楠,李海波,范刚. 水库滑坡灾害致灾机理及防控技术研究与展望. 工程科学与技术. 2023(01): 110-128 .
    13. 王长虹,杜昊东,柳伟,宗振邦,胡世韬. 考虑非饱和渗透系数随机场统计特征的库岸老滑坡稳定性分析. 岩土工程学报. 2023(02): 327-335+443 . 本站查看
    14. 关晓迪,姚夷凡. 基于不同降雨强度的黄土边坡降雨入渗特性研究. 人民珠江. 2023(02): 105-114 .
    15. 付智勇,李典庆,王顺,杜文琪. 基于多时空滑坡编录和TrAdaBoost迁移学习的滑坡易发性评价. 地球科学. 2023(05): 1935-1947 .
    16. 刘贤,揭鸿鹄,蒋水华,黎学优,黄劲松. 融合历史降雨下斜坡稳定性观测信息的可靠度分析. 地球科学. 2023(05): 1865-1874 .
    17. 何敏,耿海东,范立鹏,王艳芳. 改性粉土路堤稳定性影响因素敏感性分析. 市政技术. 2023(06): 20-25 .
    18. 袁心安,温树杰,孙自立,宋亮亮. 非饱和红砂岩风化土土水特征及降雨对其边坡稳定性的影响. 有色金属科学与工程. 2023(03): 363-371 .
    19. 张华宾,张顷顷,王来贵. 露天矿边坡饱和渗透系数随机场数值模型研究. 计算力学学报. 2023(03): 432-439 .
    20. 董港波,鲁敏. 广西北部地区1979~2018年降雨多尺度时空分布特征探究. 吉林水利. 2023(10): 46-51 .
    21. 王绪. 降雨对基覆边坡稳定性的影响研究. 陕西水利. 2023(10): 121-123+126 .
    22. 凌晓梅,张丽,滕新保,胡峰华. 仪征市棕黄色粉质黏土滑坡机制分析. 黑龙江科技大学学报. 2023(05): 724-730 .
    23. 刘晓,葛聪. 降雨对半填半挖路基边坡稳定性的影响分析. 湖南交通科技. 2023(04): 36-41 .
    24. 张晋彰,黄宏伟,张东明,方国光,唐冲. 考虑参数空间变异性的隧道结构变形分析简化方法. 岩土工程学报. 2022(01): 134-143+205-206 . 本站查看
    25. 赵天彪,袁茂莲. 某高速公路高路堤边坡稳定性分析及设计优化研究. 公路. 2022(01): 74-78 .
    26. 吴顺川,贺鹏彬,程海勇,王广和,张小强,张中信. 非煤露天矿山岩质边坡稳定性评价标准探讨. 工程科学学报. 2022(05): 876-885 .
    27. 秦晓同,崔凯,青于蓝. 水热耦合作用下季节冻土边坡降雨入渗规律及入渗机理. 中国公路学报. 2022(04): 87-98 .
    28. 廖文旺,姬建,张童,吴志军,张洁. 考虑降雨入渗参数空间变异性的浅层滑坡时效风险分析. 岩土力学. 2022(S1): 623-632 .
    29. 蒋水华,刘贤,黄发明,黄劲松,张婉彤. 融合观测信息的降雨诱发斜坡失稳机理及可靠度分析. 岩土工程学报. 2022(08): 1367-1375 . 本站查看
    30. 姚云琦,曾润强,马建花,孟祥沛,王鸿,张宗林,孟兴民. 考虑优势流作用的降雨入渗边坡可靠度分析. 岩土力学. 2022(08): 2305-2316 .
    31. 丘永富. 新疆蒙库铁矿露天采场南帮边坡稳定性分析及控制. 现代矿业. 2022(09): 237-240 .
    32. 谭建民,伍寒浪,王世梅,李高. 强降雨作用下花岗岩全风化土坡致灾现场模型试验研究. 科学技术与工程. 2022(28): 12307-12314 .
    33. 王威,杨文豪,杨成忠,吴宇健,郑明新. 铁路路基翻浆冒泥的参数敏感性及不确定性分析. 铁道学报. 2022(12): 105-113 .
    34. 何国顺,刘飞,张健,吕平,王延磊. 抗剪强度参数不确定性对库水及降雨作用下边坡可靠度的影响研究. 三峡大学学报(自然科学版). 2021(04): 37-43 .
    35. 高明辉,张雅贤,王奇智,赵建青,孙超,周记名,张娜娜. 基于上限定理的含裂缝边坡稳定性图表分析方法. 科学技术与工程. 2021(16): 6830-6837 .
    36. 姬建,王乐沛,廖文旺,张卫杰,朱德胜,高玉峰. 基于WUS概率密度权重法的边坡稳定系统可靠度分析. 岩土工程学报. 2021(08): 1492-1501 . 本站查看
    37. 凌建明,张玉,满立,李想. 公路边坡智能化监测体系研究进展. 中南大学学报(自然科学版). 2021(07): 2118-2136 .
    38. 孙吉书,邱博超,肖田. 降雨作用下路堤边坡水毁机理及影响因素分析. 河北科技大学学报. 2021(04): 415-423 .
    39. 谢梦龙,叶新宇,张升,盛岱超. LASSO算法及其在边坡稳定性分析中的应用. 岩土工程学报. 2021(09): 1724-1729 . 本站查看
    40. 黄剑斌,许旭堂,徐祥,鲜振兴,刘道奇. 降雨条件下多级残积土坡渗流稳定性研究. 水利与建筑工程学报. 2021(05): 150-156+161 .
    41. 闫强,廉向东,凌建明. 边坡开挖支护时序有限元分析. 交通运输工程学报. 2020(03): 61-71 .
    42. 陈想,段翔. 水合物对海底边坡稳定性的影响. 武汉轻工大学学报. 2020(05): 52-59 .
    43. 年庚乾,陈忠辉,张凌凡,包敏,周子涵. 边坡降雨入渗问题中两种边界条件的处理及应用. 岩土力学. 2020(12): 4105-4115 .

    Other cited types(39)

Catalog

    Article views (319) PDF downloads (238) Cited by(82)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return