• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIA Chuan-yang, JIANG Yu-jing, ZHANG Xue-peng, WANG Dong, LUAN Heng-jie, WANG Chang-sheng. Laboratory and numerical experiments on pressure relief mechanism of large-diameter boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1115-1122. DOI: 10.11779/CJGE201706018
Citation: JIA Chuan-yang, JIANG Yu-jing, ZHANG Xue-peng, WANG Dong, LUAN Heng-jie, WANG Chang-sheng. Laboratory and numerical experiments on pressure relief mechanism of large-diameter boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1115-1122. DOI: 10.11779/CJGE201706018

Laboratory and numerical experiments on pressure relief mechanism of large-diameter boreholes

More Information
  • Received Date: March 17, 2016
  • Published Date: June 24, 2017
  • The technology of borehole pressure relief is an effective way to reduce the elastic energy accumulation in the surrounding rock of roadways, which can reduce the risk of regional rock bursts. Therefore, the studies on the pressure relief mechanism of large-diameter boreholes and the corresponding reasonable parameters are of high engineering application value. A series of laboratory experiments are conducted to analyze the effects of different parameters such as borehole radius, spacing and depth on the uni-axial compression strength (UCS) and failure patterns of samples. The particle flow code (PFC) is used to quantify the micro-cracks and simulate their corresponding propagation process. The laboratory and numerical results show that the stress release resulting from propagation and coalescence of micro-cracks is the basic reason for the pressure relief around the surrounding rock of boreholes. The micro-cracks around the surrounding rock increase with the increase of radius and depth of boreholes, and the main crack becomes much more serious, resulting in larger pressure relief. In addition, as the borehole spacing decreases, UCS of samples decreases and the corresponding failure pattern changes from independent one to transfixing one, leading to a much more obvious pressure relief effect.
  • [1]
    窦林名, 何学秋. 冲击矿压防治理论与技术[M]. 徐州: 中国矿业大学出版社, 2001. (DOU Lin-ming, HE Xue-qiu. Theory and technology of rock burst prevention[M]. Xuzhou: China University of Mining and Technology Press, 2001. (in Chinese))
    [2]
    王存文, 姜福兴, 孙庆国, 等. 基于覆岩空间结构理论的冲击地压预测技术及应用[J]. 煤炭学报, 2009, 34(2): 150-155. (WANG Cun-wen, JIANG Fu-xing, SUN Qing-guo, et al. The forecasting method of rock-burst and the application based on overlying multi-strata spatial structure theory[J]. Journal of China Coal Society, 2009, 34(2): 150-155. (in Chinese))
    [3]
    窦林名, 赵从国, 杨思光, 等. 煤矿开采冲击矿压灾害防治[M]. 徐州: 中国矿业大学出版社, 2006. (DOU Ling-ming, ZHAO Cong-guo, YANG Si-guang, et al. Coal mining bumping disaster prevention and control[M]. Xuzhou: China University of Mining and Technology Press, 2006. (in Chinese))
    [4]
    潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机制及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844-1851. (PAN Yi-shan, LI Zhong-hua, ZHANG Meng-tao. Distribution, type mechanism and prevention of rockburst in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851. (in Chinese))
    [5]
    潘俊锋, 宁 宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(3): 586-596. (PAN Jun-feng, NING Yu, MAO De-bing, et al. Theory of rockburst start-up during coal mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 586-596. (in Chinese))
    [6]
    齐庆新, 雷 毅, 李宏艳, 等. 深孔断顶爆破防治冲击地压的理论与实践[J]. 岩石力学与工程学报, 2007, 26(增刊1): 3522-3527. (QI Qing-xin, LEI Yi, LI Hong-yan, et al. Theory and application of prevention of rock burst by break-tip blast in deep hole[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Supp.1): 3522-3527. (in Chinese))
    [7]
    曲效成, 姜福兴, 于正兴, 等. 基于当量钻屑法的冲击地压监测预警技术研究及应用[J]. 岩石力学与工程学报, 2011, 30(11): 2346-2351. (QU Xiao-cheng, JIANG Fu-xing, YU Zheng-xing, et al. Rockburst monitoring and precaution technology based on equivalent drilling research and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2346-2351. (in Chinese))
    [8]
    姜福兴, 曲效成, 于正兴, 等. 冲击地压实时监测预警技术及发展趋势[J]. 煤炭科学技术, 2011, 39(2): 59-64. (JIANG Fu-xing, QU Xiao-cheng, YU Zheng-xing, et al. Real time monitoring and measuring early waring technology and development of mine pressure bumping[J]. Coal Science and Technology, 2011, 39(2): 59-64. (in Chinese))
    [9]
    刘金海, 姜福兴, 王乃国. 深厚表土长大综放工作面顶板运动灾害控制[M]. 北京: 科学出版社, 2013. (LIU Jin-hai, JIANG Fu-xing, WANG Nai-guo. Control of disasters resulting from roof movement of barge fully mechanized caving face with deep alluvium[M]. Beijing: Science Press, 2013. (in Chinese))
    [10]
    易恩兵, 牟宗龙, 窦林名, 等. 软及硬煤层钻孔卸压效果对比分析研究[J]. 煤炭科学技术, 2011, 39(6): 1-5, 85. (YI En-bing, MU Zong-long, DOU Lin-ming, et al. Study on comparison and analysis of pressure releasing effect of boreholes in soft and hard seam[J]. Coal Science and Technology, 2011, 39(6): 1-5, 85. (in Chinese))
    [11]
    刘红岗, 贺永年, 徐金海, 等. 深井煤巷钻孔卸压技术的数值模拟与工业试验[J]. 煤炭学报, 2007, 32(l): 34-37. (LIU Hong-gang, HE Yong-nian, XU Jin-hai, et al. Numerical simulation and industrial test of boreholes distressing technology in deep coal tunnel[J]. Journal of China Coal Society, 2007, 32(1): 33-37. (in Chinese))
    [12]
    刘红岗, 徐金海. 煤巷钻孔卸压机理的数值模拟与应用[J]. 煤炭科技, 2003, 4(4): 37-38. (LIU Hong-gang, XU Jin-hai. Numerical simulation and application of boreholes destressing technology mechanism in coal tunnel[J]. Coal Science & Technology Magazine, 2003, 4(4): 37-38. (in Chinese))
    [13]
    兰永伟, 张永吉, 高红梅. 卸压钻孔数值模拟研究[J].辽宁工程技术大学学报, 2005, 24(增刊): 275-277. (LAN Yong-wei, ZHANG Yong-ji, GAO Hong-mei. Study of release pressure boring with numerical simulation[J]. Journal of Liaoning Technical University, 2005, 24(S0): 275-277. (in Chinese))
    [14]
    李金奎, 熊振华, 刘东生, 等. 钻孔卸压防治巷道冲击地压的数值模拟[J]. 西安科技大学学报, 2009, 29(4): 424-432. (LI Jin-kui, XIONG Zhen-hua, LIU Dong-sheng, et al. Numeric simulation of borehole pressure relief preventing roadway rockburst of a mine[J]. Journal of Xi’an University of Science and Technology, 2009, 29(4): 424-432. (in Chinese))
    [15]
    朱斯陶, 姜福兴, 史先锋, 等. 防冲钻孔参数确定的能量耗散指数法[J]. 岩土力学, 2015, 36(8): 2270-2276. (ZHU Si-tao, JIANG Fu-xing, SHI Xian-feng, et al. Energy dissipation index method for determining rockburst prevention drilling parameters[J]. Rock and Soil Mechanics, 2015, 36(8): 2270-2276. (in Chinese))
    [16]
    马振乾, 蒋耀东, 李彦伟, 等. 极软煤层巷道钻孔卸压与U型钢协同控制[J]. 煤炭学报, 2015, 40(10): 2279-2286. (MA Zhen-qian, JIANG Yao-dong, LI Yan-wei, et al. Collaborative control of pressure-released boreholes with U-steel of roadways in ultra-soft coal seam[J]. Journal of China Coal Society, 2015, 40(10): 2279-2286. (in Chinese))
    [17]
    宋希贤, 左宇军, 王 宪. 动力扰动下深部巷道卸压孔与锚杆联合支护的数值模拟[J]. 中南大学学报(自然科学版), 2014, 45(9): 3158-3165. (SONG Xi-xian, ZUO Yu-jun, WANG Xian. Numerical simulation of pressure-released hole combined support with rockbolt in deep roadway with dynamic disturbance[J]. Journal of Central South University (Science and Technology), 2014, 45(9): 3158-3165. (in Chinese))
    [18]
    张学朋, 王 刚, 蒋宇静, 等. 基于颗粒离散元模型的花岗岩压缩试验模拟研究[J]. 岩土力学. 2014, 35(增刊1): 99-105. (ZHANG Xue-peng, WANG Gang, JIANG Yu-jing, et al. Simulation research on granite compression test based on particle discrete element model[J]. Rock and Soil Mechanics. 2014, 35(S1): 99-105. (in Chinese))
  • Cited by

    Periodical cited type(18)

    1. 张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
    2. 高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
    3. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
    4. 徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
    5. 耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
    6. 蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
    7. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    8. 郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
    9. 袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
    10. 赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
    11. 杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
    12. 胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
    13. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    14. 张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 . 本站查看
    15. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    16. 贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
    17. 黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
    18. 申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 . 本站查看

    Other cited types(18)

Catalog

    Article views (427) PDF downloads (131) Cited by(36)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return