• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051
Citation: CHANG Li-ying, CHEN Qun, YE Fa-ming. Particle flow simulation for contact erosion between uniform particles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 312-317. DOI: 10.11779/CJGE2016S2051

Particle flow simulation for contact erosion between uniform particles

More Information
  • Received Date: May 18, 2016
  • Published Date: October 19, 2016
  • Contact erosion easily occurs at the interface between two soil layers subjected to a groundwater flow. Particles of the fine soils are eroded by the flow and transported through the pores of the coarse layer, which may lead to failure of a hydraulic structure. To investigate the meso-mechanism of contact erosion, different layers consisting of uniform particles subjected to a flow parallel to the interface are simulated using the particle flow code. The results show that when the ratio of the effective diameter of the fine layer to the effective pore diameter of the coarse layer is larger than 0.50, the contact erosion does not occur. When the contact erosion happens between layers, the fine particles at the interface will move and be transported by the flows. With the increase in the loss quantity of the fine particles, the coarse particles will sink and the flow velocity will increase.
  • [1]
    刘 杰, 谢定松, 崔亦昊. 江河大堤双层地基渗透破坏机理模型试验研究[J]. 水利学报, 2008, 39(11): 1211-1220. (LIU Jie, XIE Ding-song, CUI Yi-hao. Failure mechanism of seepage in levees with double-layer foundation[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1211-1220. (in Chinese))
    [2]
    STÉPHANE B. Erosion in geomechanics applied to dams and levees[M]. New York: John Wiley and Sons Inc, 2013.
    [3]
    ИСТОМИНА В С. фалвтрадионная устойчивость грунтов[M]. Госстройиэдат, 1957. (ISTOMINA B C. Soil seepage stability[M]. Moscow, 1957. )
    [4]
    BRAUNS J. Erosionsverhalten geschichteten bodens bei horizontaler durchstromung[J]. Wasserwirtschaft, 1985, 75: 448-453.
    [5]
    BEZUIJEN A, KLEIN-BRETELLER M, BAKKER K J. Design criteria for placed block revetments and granular filters[C]// Proceedings of the 2 nd International Conference on Coastal & Port Engineering in Developing Countries. Beijing, 1987.
    [6]
    GUIDOUX C, FAURE Y H, BEGUIN R, et al. Contact erosion at the interface between granular filter and various base soils with tangential flow[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 741-750.
    [7]
    WÖRMAN A, OLAFSDOTTIR R. Erosion in a granular medium interface[J]. Journal of Hydraulic Research,1992, 30(5): 639-655.
    [8]
    DEN ADEL H, KOENDERS M A, BAKKER K J. The analysis of relaxed criteria for erosion-control filters[J]. Canadian Geotechnical Journal, 1994, 31(6): 829-840.
    [9]
    BEGUIN R, PHILIPPE P, FAURE Y H. Experimental study of contact erosion at a granular interface[J]. Springer Series in Geomechanics and Geoengineering, 2011, 11: 131-136.
    [10]
    BEGUIN R, PHILIPPE P, FAURE Y H. Pore-scale flow measurements at the interface between a sandy layer and a model porous medium: application to statistical modeling of contact erosion[J]. Journal of Hydraulic Engineering, 2013, 139(1): 1-11.
    [11]
    SARI H, CHAREYER B, CATALANO E, et al. Investigation of internal erosion process using a coupled DEM-fluid method[C]// Proceedings of the 2 nd International Conference on Particle-based Methods-Particles 2011. Barcelona, 2011.
    [12]
    SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters[J]. Journal of Geotechnical Engineering, 1984, 110(6): 684-700.
    [13]
    ZOU Y H, CHEN Q, CHEN X Q, et al. Discrete numerical modeling of particle transport in granular filters[J]. Computers and Geotechnics, 2013, 47(47): 48-56.
    [14]
    SHAMY U E, AYDIN F. A micro-scale model for the analysis of flood-induced piping in river levees[C]// Proceedings of Sessions of Geo-Denver 2007 Congress: Embankments, Dams and Slopes. GSP, 2007: 161.
    [15]
    SHAMY U E, AYDIN F. Multiscale modeling of flood-induced piping in river levees[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1385-1398.
    [16]
    ABDELHAMID Y, SHAMY U E. Multiscale modeling of flood-induced scour in a particle bed[C]//GeoCongress 2012, Geotechnical Special Publicaiton, ASCE. Oakland, 2012: 740-749.
    [17]
    HUANG Q F, ZHAN M L, SHENG J C, et al. Investigation of fluid flow-induced particle migration in granular filters using a DEM-CFD method[J]. Journal of Hydrodynamics, 2014, 26(3): 406-415.
    [18]
    JACKSON R. The dynamics of fluidized particles[M]. New York: Cambridge University Press, 2000.
    [19]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65.
    [20]
    BOUILLARD J X, LYCZKOWSKI R W, GIDASPOW D. Porosity distributions in a fluidized bed with an immersed obstacle[J]. AICHE Journal, 1989, 35(6): 908-922.
    [21]
    STÉPHANE B. Erosion of geomaterials[M]. New York: John Wiley and Sons Inc, 2012.
    [22]
    GOLTZ M. Determination of critical filter velocity in suffusive soils[R]. Saint Petersburg: European Working Group on Internal Erosion, 2009.
    [23]
    刘 杰. 土石坝渗流控制理论基础及工程经验教训[M]. 北京: 中国水利水电出版社, 2006. (LIU Jie. Seepage control of earth-rock dams: theoretical basis, engineering experiences and lessons[M]. Beijing: China Water & Power Press, 2006. (in Chinese))
  • Cited by

    Periodical cited type(19)

    1. 李明宇,王越,陈健,高始军,田应飞,靳军伟,杨钊. 同步注浆上浮力作用下大盾构管片瞬时变形特征模型试验研究. 铁道学报. 2025(01): 171-182 .
    2. 王海涛,王悦,孙九春. 管片上浮模型试验平台研制. 隧道建设(中英文). 2025(01): 132-138 .
    3. 万东兴,张迪,孙峰,潘辰昕,朱振伟,徐晓峰,何超,申屠琪. 超大直径浅埋盾构隧道施工期管片结构力学响应研究. 现代隧道技术. 2025(01): 135-146 .
    4. 门小雄,任辉,郭保和,陈玉林,孙飞祥. 浅埋极软地层超大直径盾构隧道施工期上浮控制措施及实测数据分析. 交通节能与环保. 2024(01): 222-226 .
    5. 曾红波,石州,涂金光,徐金峰,肖中林. 临海富水地层大直径盾构隧道管片上浮机制及控制措施. 公路交通科技. 2024(01): 138-151 .
    6. 苏恩杰,任超,叶飞,温小宝,韩兴博,胡瑞青. 泥质砂岩地层盾构隧道管片连续上浮规律与分析. 中南大学学报(自然科学版). 2024(02): 706-714 .
    7. 李明宇,王越,李庆民,陈健,王承震,蔺云宏,田应飞. 大盾构管片最不利上浮状态下三维形变特征模型试验方案设计. 中国铁道科学. 2024(02): 101-112 .
    8. 高俊华,杨光,赵森森,黄忠凯,张吾渝,张冬梅. 软土地区浅埋大直径盾构隧道管片上浮规律及预测:以上海机场联络线工程为例. 科学技术与工程. 2024(11): 4759-4768 .
    9. 包小华,李浚弘,陈湘生,沈俊,刘自明,姚义. 水下盾构隧道管片拼装质量控制方法研究现状与展望. 隧道建设(中英文). 2024(04): 643-662 .
    10. 林刚,易丹,罗世培,晏启祥,张君臣. 带定位榫盾构隧道管片接头剪切力学行为研究. 北京交通大学学报. 2024(03): 130-139 .
    11. 杜闯东,杜怡杭,黄小福. 大直径盾构隧道管片错台和姿态线形控制技术研究与探讨. 隧道建设(中英文). 2024(07): 1510-1519 .
    12. 田磊. 受限空间监测机器人运动控制系统. 中国新技术新产品. 2024(13): 28-31 .
    13. 刘议文,周子扬,封坤,何川,林刚. 盾构隧道套筒-直螺栓新型环间接头抗剪性能研究. 铁道科学与工程学报. 2024(08): 3248-3261 .
    14. 薛华坤,李晓飞,许万丰,林本清. 软土地层地铁双线盾构推进地表沉降规律研究. 现代城市轨道交通. 2024(09): 97-104 .
    15. 周勋,杨金秋,韦生达,曹江涛,马龙祥. 基于盾构管片上浮控制的同步浆液初凝时间研究. 地下空间与工程学报. 2024(06): 1991-1999 .
    16. 钟建敏,张亮亮,何应道,罗驰恒,熊逸凡,王超. 济泺路穿黄北延隧道设计关键技术. 隧道与地下工程灾害防治. 2024(04): 72-80 .
    17. 姚柏强,陈赛旋,李荣. 受限空间隧道病害巡检机器人机构设计与研究. 河南科技学院学报(自然科学版). 2023(04): 16-25 .
    18. 韦生达,杨金秋,周勋,曹江涛,马龙祥,杨浩. 考虑埋深影响的施工期管片上浮纵向分析改进模型及应用. 铁道建筑. 2023(11): 97-101 .
    19. 章勋桁,叶辉贤,谭毅俊,苏栋,周敏,成浩. 纵向坡度对粉砂地层盾构隧道施工管片上浮的影响. 隧道建设(中英文). 2023(S2): 115-121 .

    Other cited types(8)

Catalog

    Article views (362) PDF downloads (376) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return