• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Min, YANG Jun. Centrifuge tests on seismic response of piled raft foundation with large spacing[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2184-2193. DOI: 10.11779/CJGE201612006
Citation: YANG Min, YANG Jun. Centrifuge tests on seismic response of piled raft foundation with large spacing[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2184-2193. DOI: 10.11779/CJGE201612006

Centrifuge tests on seismic response of piled raft foundation with large spacing

More Information
  • Received Date: February 28, 2016
  • Published Date: December 24, 2016
  • Centrifuge tests are performed to study the seismic response of piled raft foundation with large spacing in saturated soft clay. By laying sand on clay surface before centrifuge consolidation under 50g, the soil layer with upper over-consolidated clay and lower normally-consolidated clay is simulated. Structural models are simplified to mass points and members. Two foundation types of connected and non-connected piled rafts are considered in tests. The responses of earthquake acceleration, displacements, pore water pressures and pile strains are investigated. The test results show that in the natural vibration frequency range of soft clay ground, the interaction of superstructure-foundation-soil is very remarkable, and the acceleration amplification factors of structure and foundation are higher than those in other frequency ranges. The earthquake induced instant settlements of the connected and non-connected piled rafts are larger than those of the surrounding ground, but a long time after the earthquake the settlement velocities of foundation and ground are almost the same. At the end of the earthquake, more than half of lateral displacement of superstructure and foundation inclination of the connected piled raft are reduced compared with those of the non-connected piled raft, but with higher acceleration amplification effects of superstructure. After the earthquake some loads transfer from pile group to raft on account of soil degradation and loss of bearing capacity of piled raft. However, there are generally few changes of load sharing ratio between piles and raft. The research has revealed the deformation control mechanisms of pile foundation under seismic subsidence in soft clay, and it may provide evidence for the design of settlement-reducing piles.
  • [1]
    DGJ 08—11—2010上海市地基基础设计规范[S]. 2010. (DGJ 08—11—2010 Foundation design code of Shanghai[S]. 2010. (in Chinese))
    [2]
    JGJ94—2008 建筑桩基技术规范[S]. 2008. (JGJ 94—2008 Technical code for building pile foundations[S]. 2008. (in Chinese))
    [3]
    YANG M. Study on reducing-settlement pile foundation based on controlling settlement principle[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 481-486.
    [4]
    宰金珉. 塑性支承桩——卸荷减沉桩的概念及其工程应用[J]. 岩土工程学报, 2001, 23(3): 273-278. (ZAI Jin-min. Concept of plastically bearing pile and its practical application[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 273-278. (in Chinese))
    [5]
    POULOS H G. Piled raft foundations: design and applications [J]. Géotechnique, 2001, 51(2): 95-113.
    [6]
    REUL O, RANDOLPH M F. Piled rafts in overconsolidated clay: comparison of in situ measurements and numerical analyses[J]. Géotechnique, 2003, 53(3): 301-315.
    [7]
    HORIKOSHI K, MATSUMOTO T, HASHIZUME Y, et al. Performance of piled raft foundations subjected to dynamic loading[J]. International Journal of Physical Modelling in Geotechnics, 2003, 3(2): 51-62.
    [8]
    MATSUMOTO T, FUKUMURA K, HORIKOSHI K, et al. Shaking table tests on model piled rafts in sand considering influence of superstructures[J]. International Journal of Physical Modelling in Geotechnics, 2004, 4(3): 21-38.
    [9]
    NAKAIA S, KATOA H, ISHIDAA R, et al. Load bearing mechanism of piled raft foundation during earthquake[C]// Proceedings of 3rd UJNR Workshop on Soil-Structure Interaction, March, 2004: 29-30.
    [10]
    BANERJEE S, GOH S H, LEE F H. Earthquake-induced bending moment in fixed-head piles in soft clay[J]. Géotechnique, 2014, 64(6): 431-446.
    [11]
    马 亢, 许 强, 李庶林, 等. 高低承台桩基地震行为差异研究[J]. 岩石力学与工程学报, 2015, 34(6): 1250-1258. (MA Kang, XU Qiang, LI Shu-lin, et al. Difference of seismic behavior of high and low caps of pile foundations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1250-1258. (in Chinese))
    [12]
    DGJ 08—9—2013 上海市建筑抗震设计规程[S]. 2013. (DGJ 08—9—2013 Code for seismic design of buildings of Shanghai[S]. 2013. (in Chinese))
    [13]
    钟 锐, 黄茂松. 沉箱加桩复合基础地震响应离心试验[J]. 岩土力学, 2014, 35(2): 380-388. (ZHONG Rui, HUANG Mao-song. Centrifuge tests for seismic response of caisson-pile composite foundation[J]. Rock and Soil Mechanics, 2014, 35(2): 380-388. (in Chinese))
    [14]
    YAMADA T, YAMASHITA K, KAKURAI M, et al. Long-term behaviour of tall building on raft foundation constructed by top-down method[C]// Proceedings of the 5th International Conference on Deep Foundation Practice. Singapore, 2001: 411-417.
    [15]
    YAMASHITA K, HAMADA J, WAKAI S, TANIKAWA T. Settlement and load sharing behavior of piled raft foundations based on long-term monitoring[J]. Takenaka Technical Research Report, 2014, 70: 29-40.
  • Cited by

    Periodical cited type(15)

    1. 程虎,李重情,穆朝民. 冻结温度对不同粒径冻土石混合体劈裂特性的影响. 煤矿安全. 2024(01): 160-166 .
    2. 张勇敢,鲁洋,刘斯宏,田金博,张思钰,方斌昕. 土工袋抑制膨胀土冻胀性能试验及机制探讨. 岩土力学. 2024(03): 759-768+796 .
    3. 陈鑫,余文亮. 混合型缓冲回填材料劈裂抗拉强度尺寸效应统计分析. 科学技术与工程. 2024(10): 4229-4238 .
    4. 吴进财,孙屹,毕朝达,郁舒阳. 基于SPH方法的土体干缩开裂数值模拟研究. 水电能源科学. 2024(11): 87-91 .
    5. 田金博,张勇敢,鲁洋,马文鑫,刘斯宏,王柳江,刘瑾. 考虑初始饱和度影响的冻结渠坡膨胀土力学特性. 哈尔滨工业大学学报. 2024(11): 123-131 .
    6. 韦四江,翟黎伟,王猛,高继耀,王生柱,李鑫鹏. 不同速率加锚煤样抗拉力学响应特征试验研究. 采矿与安全工程学报. 2023(03): 458-466 .
    7. 谢敬礼,彭浩,杨明桃,杨建明,马利科. 缓冲/回填材料砌块抗拉强度试验研究. 世界核地质科学. 2023(02): 288-297 .
    8. 马冬冬,汪鑫鹏,张文璞,马芹永,周志伟,张蓉蓉. 冲击荷载作用下冻土劈裂拉伸破坏特性试验研究. 岩土工程学报. 2023(07): 1533-1539 . 本站查看
    9. 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型. 吉林大学学报(工学版). 2023(08): 2339-2349 .
    10. 刘勤龙,李旭,姚兆明,吴永康,蔡德钩. 冻土强度特性及其主控因素综述. 冰川冻土. 2023(03): 1092-1104 .
    11. 张思钰,张勇敢,刘斯宏,鲁洋. 膨胀土巴西劈裂强度及其破坏能量演化规律. 哈尔滨工业大学学报. 2023(11): 125-134 .
    12. 马文鑫,张勇敢,刘斯宏,郑军威,凤良,鲁洋. 干密度和温度对冻结膨胀土单轴压缩特性影响的试验研究. 冰川冻土. 2022(02): 515-523 .
    13. 张勇敢,刘斯宏,鲁洋,方斌昕,廖洁,张思钰. 袋装膨胀土强度变形特性及其碾压质量控制与检测. 河海大学学报(自然科学版). 2022(05): 118-123 .
    14. 王海航,周扬,赵晓东,王建州,周国庆. 冻土抗拉强度研究现状与展望. 冰川冻土. 2022(06): 1807-1819 .
    15. 郝常昊,任富强. 高原露天矿山冻土力学特性实验研究. 辽宁科技大学学报. 2022(06): 443-448 .

    Other cited types(15)

Catalog

    Article views (518) PDF downloads (325) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return