• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Zhou-neng, FENG Xia-ting, XIAO Ya-xun, FENG Guang-liang. Microseismic characteristics and rockburst risk of deep tunnel constructed by different excavation methods[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 867-876. DOI: 10.11779/CJGE201605012
Citation: ZHAO Zhou-neng, FENG Xia-ting, XIAO Ya-xun, FENG Guang-liang. Microseismic characteristics and rockburst risk of deep tunnel constructed by different excavation methods[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 867-876. DOI: 10.11779/CJGE201605012

Microseismic characteristics and rockburst risk of deep tunnel constructed by different excavation methods

More Information
  • Received Date: May 05, 2015
  • Published Date: May 24, 2016
  • Based on the stress state analysis and microseismic monitoring data of the surrounding rock of JinpingⅡ Hydropower Station, microseismic characteristics and rockburst risk of deep tunnel constructed by TBM-drilling and blasting method are compared and studied. The results show that: (1) The stress concentration of the surrounding rock caused by the drilling- blasting method is far more away from the tunnel wall than that by TBM, and the stress gradient is small, while the stress gradient caused by TBM excavation is large. (2) The strain energy of the surrounding rock mainly releases in several hours after blasting, especially in the first hour. Under the condition of TBM excavation, the stress of the surrounding rock unloads with the continuous mode and the energy violently releases in whole construction process. (3) The Microseismic magnitude and seismic source fracture scale caused by TBM excavation are larger than those by drilling-blasting method. (4) By the drilling-blasting method, the strain energy of the surrounding rock rarely dissipates in the form of rockburst but mostly in the form of rock mass cracking. By TBM excavation, the strain energy of the surrounding rock successively dissipates, resulting in frequent microseismic events. Part of strain energy can dissipate in the form of rockburst. Generally, mild rockbursts often occur in the same range. The inoculation process of high-grade rockburst accompanies with the occurrence of low-grade rockburst. For instance, the occurrence of medium rockburst accompanies with mild rockburst and strong rockburst accompanies with medium rockburst and mild rockburst, and so on. In conclusion, the drilling-blasting method is superior to TBM for rockburst prevention and control of deep tunnel with strong rockburst risk
  • [1]
    钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. (QIAN Qi-hu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese))
    [2]
    MENDECKI A J. Seismic monitoring in mines[M]. 1st ed. London: Chapman and Hall, 1997.
    [3]
    DURRHEIM R J. The deep mine and future mine research programmes-knowledge and technology for deep gold mining in South Africa[C]// POTVIN Y, HADJIGEORGIOU J, STACEY D, eds. Challenges in Deep and High Stress Mining. Nedlands: AustralianCenter for Geomechanics, 2007: 130-140.
    [4]
    POTVIN Y, HUDYMA M R. Seismic monitoring in highly mechanized hardrock mines in Canada and Australia[C]// VAN ASWEGEN G, DURRHEIM R J, ORTLEPP W D, eds. Proceedings of the Sixth International Symposium on Rockburst and Seismicity in Mines. Johannesburg: The South Institute of Mining and Metallurgy, 2001: 267-280.
    [5]
    SIKORA M, WROBEL L. Application of rule induction algorithms for analysis of data collected by seismic hazard monitoring systems in coal mines[J]. Archives of Mining Sciences, 2010, 55(1): 91-114.
    [6]
    VALLEJOS J A, MCKINNON S D. Correlations between mining and seismicity for re-entry protocol development[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 616-625.
    [7]
    赵兴东, 李元辉, 刘建坡, 等. 红透山矿深部开采岩爆潜在区微震活动性研究[J]. 东北大学学报(自然科学版) , 2009, 30(9): 1330-1333. (ZHAO Xing-dong, LI Yuan-hu, LIU Jian-po, et al. Study on microseismic activity in potential rockburst zone during deep excavation in Hongtoushan Mine[J]. Journal of Northeastern University (Natural Science), 2009, 30(9): 1330-1333. (in Chinese))
    [8]
    唐礼忠, 杨承祥, 潘长良. 大规模深井开采微震监测系统站网布置优化[J]. 岩石力学与工程学报, 2006, 25(10): 2036-2042. (TANG Li-zhong, YANG Cheng-xiang, PAN Chang-liang. Optimization of microseismic monitoring network for large-scale deep well mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2036-2042. (in Chinese))
    [9]
    唐绍辉, 潘 懿, 黄英华, 等. 深井矿山地压灾害微震监测技术应用研究[J]. 岩石力学与工程学报, 2009, 28(2): 3597-3603. (TANG Shao-hui, PAN Yi, HUANG Ying-hua, et al. Application research of micro-seismic monitoring technology to geostress hazards in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2): 3597-3603. (in Chinese))
    [10]
    姜福兴, 杨淑华, 成云海, 等. 煤矿冲击地压的微地震监测研究[J].地球物理学报, 2006, 49(5): 1511-1516. (JIANG Fu-xing, YANG Shu-hua, CHENG Yun-hai, et al. A study on microseismic monitoring of rock burst in coal mine[J]. Chinese Journal of Geophysics, 2006, 49(5): 1511-1516. (in Chinese))
    [11]
    曹安业, 窦林名, 秦玉红, 等. 高应力区微震监测信号特征分析[J]. 采矿与安全工程学报, 2007, 24(2): 146-149. (CAO An-ye, DOU Lin-ming, QIN Yu-hong, et al. Characteristic ofmicroseismic monitoring signal in high stressed zone[J]. Journal of Mining & Safety Engineering, 2007, 24(2): 146-149. (in Chinese))
    [12]
    冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J].岩石力学与工程学报, 2012, 31(3): 433-444. (FENG Xia-ting, CHEN Bing-rui, MING Hua-jun, et al. Evolution law and mechanism of rockbursts at deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. (in Chinese))
    [13]
    陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. (CHEN Bing-rui, FENG Xia-ting, MING Hua-jun, et al. Evolution law and mechanism of rockbursts at deep tunnels: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561-569. (in Chinese))
    [14]
    陈炳瑞, 冯夏庭, 曾雄辉, 等. 深埋隧洞TBM掘进微震实时监测与特征分析[J]. 岩石力学与工程学报, 2011, 30(2): 275-283. (CHEN Bing-rui, FENG Xia-ting, ZENG Xion-ghui, et al. Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 275-283. (in Chinese))
    [15]
    明华军, 冯夏庭, 陈炳瑞, 等. 基于矩张量的深埋隧洞岩爆机理分析[J]. 岩土力学, 2013, 34(1): 163–181. (MING Hua-jun, FENG Xia-ting, CHEN Bing-rui, et al. Rockburst mechanism analysis for deep-buried tunnel based on moment tensor[J]. Rock and Soil Mechanics, 2013, 34(1): 163–181. (in Chinese))
    [16]
    肖亚勋, 冯夏庭, 陈炳瑞, 等. 深埋隧洞极强岩爆段隧道掘进机半导洞掘进岩爆风险研究[J]. 岩土力学, 2011, 32(10): 3111-3118. (XIAO Ya-xun, FENG Xia-ting, CHEN Bing-rui, et al. Rockburst risk of tunnel boring machine part-pilot excavation in very strong rockburst section of deep hard tunnel[J]. Rock and Soil Mechanics, 2011, 32(10): 3111-3118. (in Chinese))
    [17]
    于 群, 唐春安, 李连崇, 等. 基于微震监测的锦屏二级水电站深埋隧洞岩爆孕育过程分析[J]. 岩土工程学报, 2014, 36(12): 2315-2322. (YU Qun, TANG Chun-An, LI Lian-chong, et al. Nucleation process of rockbursts based on microseismic monitoring of deep-buried tunnels for Jinping Ⅱ Hydropower Station [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2315-2322. (in Chinese))
    [18]
    李 亮, 傅鹤林. TBM 破岩机制及刀圈改形技术研究[J].铁道学报, 2000, 22(增刊): 8-10. (LI Liang, FU He-li. Rock breaking mechanism by TBM and modification to pan knife ring[J]. Journal of the China Railway Society, 2000, 22(S0): 8-10. (in Chinese))
    [19]
    刘志杰, 腾弘飞, 史彦军, 等. TBM 刀盘设计若干关键技术[J]. 中国机械工程, 2008, 19(16): 1980-1985. (LIU Zhi-jie, TENG Hong-fei, SHI Yan-jun, et al. Cutter head design key issues of a full face rock tunnel boring machine(TBM)[J]. China Machine Engineering, 2008, 19(16): 1980-1985. (in Chinese))
    [20]
    BARTON N. TBM tunneling in jointed and faulted rock [M]. Rotterdam: Balkema, 2000: 61-64.
    [21]
    潘井澜. 爆破破岩机理的探讨[J]. 爆破, 1994(4): 1-6. (PAN Jing-lan. The discussion of rock mechanism by blasting[J]. Blasting, 1994(4): 1-6. (in Chinese))
    [22]
    薛备芳. 掘进机开挖法与钻爆法对围岩稳定性影响的比较[J]. 水利电力施工机械, 1995, 17(4): 16-17. (XUE Bei-fang. Comparison of the influence on the tunnel surrounding rock between TBM and blasting excavation[J]. Construction Machinery for Hydraulic Engineering and Power Station, 1995, 17(4): 16-17. (in Chinese))
    [23]
    赵周能, 冯夏庭, 丰光亮, 等. 深埋隧洞微震活动区与岩爆的相关性研究[J]. 岩土力学, 2013, 34(2): 491-497. (ZHAO Zhou-neng, FENG Xia-ting, FENG Gang-liang, et al. Study on relativity between rockburst and microseismic activity zone in deep-buried tunnel[J], Rock and Soil Mechanics, 2013, 34(2): 491-497. (in Chinese))
    [24]
    MENDECKI A J. Real time quantitative seismicity in mines[C]//YOUNG R P ed. Proceedings of Sixth International Symposium on Rockburst and Seismicity in Mines. Rotterdam: A. A. Balkema, 1993: 287-296.
    [25]
    GB 50287—2006水力发电工程地质勘查规范[S]. 2006. (GB 50287—2006 Code for hydropower engineering geological investigation[S]. 2006. (in Chinese))
    [26]
    冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013: 118-141. (FENG Xia-ting, CHEN Bing-rui, ZHANG Chuan-qing, et al. Mechanism, warning and dynamic control of rockburst development processes[M]. Beijing: Science Press, 2013: 118-141. (in Chinese))
    [27]
    欧阳孝忠. 深埋隧洞岩爆特征及规律成因浅析[J]. 贵州水力发电, 1996, 27(4): 16-21. (OUYANG Xiao-zhong. Preliminary analysis on cause of regular pattern formation of rock burst in tunnels buried deeply[J]. Guizhou Water Power, 1996, 27(4): 16 -21. (in Chinese))
    [28]
    侯 靖, 张春生, 单治钢. 锦屏Ⅱ级水电站深埋引水隧洞岩爆特征及防治措施[J]. 地下空间与工程学报. 2011, 7(6): 1251-1257. (HOU Jing, ZHANG Chun-sheng, SHAN Zhi-gang. Rockburst characteristics and the control measures in the deep diversion tunnel of Jinping II Hydropower Station[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(6): 1251-1257. (in Chinese))
  • Cited by

    Periodical cited type(40)

    1. 高乾丰,余涵,余慧聪,曾铃,陈鹏鹛. 植草红黏土干缩开裂特性及影响因素研究. 工程地质学报. 2025(01): 47-57 .
    2. 曾铃,郭雨,高乾丰,罗锦涛,查焕奕,卞汉兵. 湿热交替下粉砂质泥岩裂隙动态扩展及机制研究. 岩土工程学报. 2025(04): 820-828 . 本站查看
    3. 安然,陈昶,牛玉璋. 考虑干湿循环影响的残积土μ–CT扫描与渗流模拟. 工程科学与技术. 2024(02): 228-235 .
    4. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 .
    5. 郅彬,王尚杰. 干湿-冻融循环下黄土力学特性及损伤机制研究. 岩土力学. 2024(04): 1092-1102 .
    6. 柴石玉,张凌凯. 干湿-冻融循环对碱激发粉煤灰-矿粉改性膨胀土力学特性的损伤机理研究. 工程力学. 2024(11): 157-167 .
    7. 蔡国军,田宏亮,刘路路,刘晓燕,章荣军. 复杂环境下膨胀土工程特性演化特征研究进展. 应用基础与工程科学学报. 2024(06): 1511-1537 .
    8. 赵凌峰,张凌凯. 北疆供水一期工程膨胀性渠坡滑动破坏机制与稳定分析. 工程力学. 2023(03): 129-140+188 .
    9. 李勇,邱一迪,高玮,高文伟,崔芳鹏,胡瑞林. 膨胀土边坡渗透变形的表面裂隙图像特征分析. 工程地质学报. 2023(01): 267-276 .
    10. 张凌凯,崔子晏. 干湿-冻融循环条件下膨胀土的压缩及渗透特性变化规律. 岩土力学. 2023(03): 728-740 .
    11. 张凌凯,赵凌峰. 考虑含水率与干湿冻融影响的膨胀土蠕变损伤模型二次开发及工程应用. 水利水电技术(中英文). 2023(07): 205-217 .
    12. 李新宇,凌贤长,曲娜. 考虑温度效应的冻结膨胀土统计损伤模型. 吉林大学学报(工学版). 2023(08): 2339-2349 .
    13. 蔡正银,朱洵,张晨,黄英豪. 高寒区膨胀土渠道边坡性能演变规律. 中南大学学报(自然科学版). 2022(01): 21-50 .
    14. 杨济铭,张红日,陈林,徐永福. 基于数字图像相关技术的膨胀土边坡裂隙形态演化规律分析. 中南大学学报(自然科学版). 2022(01): 225-238 .
    15. 樊科伟,严俊,刘苓杰,裴秋阳,邹维列. 木质素纤维改性季冻区膨胀土强度特性与微观结构研究. 中南大学学报(自然科学版). 2022(01): 326-334 .
    16. 樊科伟,贾昊泽,蔺建国,严俊,邹维列. 干湿循环历史对季冻区膨胀土体变特性的影响. 中南大学学报(自然科学版). 2022(01): 280-287 .
    17. 朱锐,郭万里. 寒区渠道粉土质砂换填料力学特性试验研究. 中南大学学报(自然科学版). 2022(04): 1461-1471 .
    18. 叶琼瑶,孙乐乐,米德才,张文慧,王保田. 气候环境作用下膨胀土变形和强度特性响应对比研究. 工业建筑. 2022(S1): 337-342 .
    19. 蔡正银,张晨,朱洵,黄英豪,王羿. 高寒区长距离供水工程能力提升与安全保障技术. 岩土工程学报. 2022(07): 1239-1254 . 本站查看
    20. 韩洪武,穆彦虎,虞洪,丁泽琨,陈领. 不同冻土条件下渠道地基热状况模拟研究. 水利水运工程学报. 2022(04): 140-150 .
    21. 张勇敢,刘斯宏,鲁洋,方斌昕,廖洁,张思钰. 袋装膨胀土强度变形特性及其碾压质量控制与检测. 河海大学学报(自然科学版). 2022(05): 118-123 .
    22. 李甜果,孔令伟,周振华. 原状膨胀土脱湿过程中多层次微细观结构演化特征与概化模型. 岩土工程学报. 2022(S1): 35-39 . 本站查看
    23. 汪时机,杨振北,李贤,骆赵刚,许冲,李达. 干湿交替下膨胀土裂隙演化与强度衰减规律试验研究. 农业工程学报. 2021(05): 113-122 .
    24. 许健,任畅,高靖寓,兰伟. 干湿循环效应下Na_2SO_4盐渍原状黄土渗透特性与细观机制. 中南大学学报(自然科学版). 2021(05): 1644-1654 .
    25. 朱锐,蔡正银,黄英豪,张晨,郭万里,朱洵. 湿干冻融循环下渠水入渗特性的离心模型试验和现场试验研究(英文). Journal of Central South University. 2021(05): 1519-1533 .
    26. 陈勃文,黄英豪. 大型输水渠道改扩建关键技术及设备的研发与应用. 水利水运工程学报. 2021(04): 99-106 .
    27. 吕建航,杨忠年,时伟,李国玉,凌贤长,张莹莹. 冻融循环下加筋膨胀土边坡稳定性模型试验. 吉林大学学报(地球科学版). 2021(05): 1587-1596 .
    28. 朱锐,蔡正银,黄英豪,张晨,郭万里. 冻融过程对高寒区渠道基土力学特性的影响. 农业工程学报. 2021(14): 108-116 .
    29. 黄英豪,陈永,朱洵,吴志强,朱锐,王硕,吴敏. 相变材料改良膨胀土冻融性能试验研究及微观机理分析. 岩土工程学报. 2021(11): 1994-2002 . 本站查看
    30. 张勇敢,鲁洋,刘斯宏,李卓,张呈斌,周雨奇. 基于巴西劈裂试验的冻结膨胀土拉伸特性研究. 岩土工程学报. 2021(11): 2046-2054 . 本站查看
    31. 陆正,王保田,康靖宇,张恒,张福海,张海霞. 含充填裂隙的膨胀土强度特性研究. 粉煤灰综合利用. 2021(06): 24-28 .
    32. 朱洵,李国英,蔡正银,黄英豪,张晨,陈皓. 湿干循环下膨胀土渠道边坡的破坏模式及稳定性. 农业工程学报. 2020(04): 159-167 .
    33. 朱洵,蔡正银,黄英豪,张晨,郭万里. 湿干冻融耦合循环及干密度对膨胀土力学特性影响的试验研究. 水利学报. 2020(03): 286-294 .
    34. 黄英豪,蔡正银,朱锐,张晨,郭万里,朱洵,陈永. 季冻区渠道湿干冻融离心模拟试验设备的研制. 岩土工程学报. 2020(07): 1181-1188 . 本站查看
    35. 蔡正银,朱锐,黄英豪,张晨,郭万里,陈皓. 冻融过程对膨胀土渠道边坡劣化模式的影响. 水利学报. 2020(08): 915-923 .
    36. 蔡正银,朱锐,黄英豪,张晨,郭万里. 湿干冻融耦合循环作用下渠道劣化过程离心模型试验研究. 岩土工程学报. 2020(10): 1773-1782 . 本站查看
    37. 骆赵刚,汪时机,张继伟,杨振北. 膨胀土裂隙发育的厚度效应试验研究. 岩土工程学报. 2020(10): 1922-1930 . 本站查看
    38. 陈勃文,张晨. 北疆输水工程渠堤渗漏规律研究. 水利水电技术. 2020(S2): 306-310 .
    39. 张晨,朱洵,黄英豪,郭万里,韩迅. 湿干冻融耦合作用下膨胀土裂隙发育方向性研究. 岩土工程学报. 2020(S1): 234-238 . 本站查看
    40. 邓铭江,蔡正银,朱洵,张晨. 北疆渠道膨胀土边坡破坏机制及加固措施. 岩土工程学报. 2020(S2): 50-55 . 本站查看

    Other cited types(12)

Catalog

    Article views (363) PDF downloads (376) Cited by(52)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return