YIN Song, KONG Ling-wei, ZHANG Xian-wei, Hossain Md Sayem, FAN You-jie. Experimental study on in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695. DOI: 10.11779/CJGE201604013
    Citation: YIN Song, KONG Ling-wei, ZHANG Xian-wei, Hossain Md Sayem, FAN You-jie. Experimental study on in-situ properties of residual soil by self-boring pressuremeter[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 688-695. DOI: 10.11779/CJGE201604013

    Experimental study on in-situ properties of residual soil by self-boring pressuremeter

    More Information
    • Revised Date: March 26, 2015
    • Published Date: April 24, 2016
    • Residual soil is a regional and special soil, and accurate evaluation of its mechanical properties and bearing capacity is a necessary condition for the treatment and foundation for any types of engineering projects. The residual soil in the studied area within the range 20 min depth is tested by using the self-boring pressuremeter. The strength and stiffness parameters of the soil are evaluated through theoretical analysis. The variations of mechanical properties with respect to depth and horizontal direction are also analyzed. The decay law of stiffness characteristics and its applicability under different strain levels are evaluated. The results show that the values of the stiffness and strength of the soil are much different in the site, and the residual soil has obvious weathering crust. Initially the shearing and deformation parameters decrease up to a certain depth and then increase gradually with the increasing depth. Within the test site, the mechanical parameters of soil at shallow depths are quite different and converge after reaching a certain depth. Gs and Gt show non-linear relationship with γc. In a small strain range, Gs and Gt decay rapidly when the strain is 2% to 3% and tend to be stable. The non-linear analysis method is more reasonable for determining the shear modulus. It is believed that in the engineering design of such site, shear modulus should be chosen based on the strain level of self-drilling lateral pressure test results, and the linear secant shear modulus Gur is somewhat risky. Moreover in the small strain, shear modulus of the soil is more sensitive to difference of the soil, and in order to ensure the representative parameters, the test density of soil at shallow depth should be increased.
    • [1]
      吴能森. 结构性花岗岩残积土的特性及工程问题研究[D].南京: 南京工业大学, 2005. (WU Neng-sen. A study on characteristics and some engineering problems of granite residual soil with structural[D]. Nanjing: Nanjing Tech University, 2005. (in Chinese))
      [2]
      张先伟, 孔令伟, 臧 濛. 雷州半岛玄武岩残积土的工程地质特性研究[J]. 岩土工程学报, 2014, 36(5): 855-863. (ZHANG Xian-wei, KONG Ling-wei, ZANG Meng. Engineering geological characteristics of basalt residual soils in Leizhou Peninsula[J]. Geotechnical Engineering, 2014, 36(5): 855-863. (in Chinese))
      [3]
      SCHNAID F, ORTIGAO J A R, MANTARAS F M, et al. Analysis of self-boring pressuremeter (SBPM) and Marchetti dilatometer (DMT) tests in granite saprolites[J]. Canadian Geotechnical Journal, 2000, 37(4): 796-810.
      [4]
      杨光华, 骆以道, 张玉成, 等. 用简单原位试验确定切线模量法的参数及其在砂土地基非线性沉降分析中的验证[J]. 岩土工程学报, 2013, 35(3): 401-408. (YANG Guang-hua, LUO Yi-dao, ZHANG Yu-cheng, et al. Determination of parameters for tangent modulus method using simple in-situ test and its application in nonlinear settlement analysis on sandy soil[J]. Geotechnical Engineering, 2014, 36(5): 855-863. (in Chinese))
      [5]
      张先伟, 孔令伟, 郭爱国, 等. 强结构性对湛江黏土地区 CPTU 原位测定结果的影响[J]. 工程力学, 2012, 30(2): 118-124. (ZHANG Xian-wei, KONG Ling-wei, GUO Ai-guo, et al. Effect of strong structure on CPTU test results of Zhanjiang clay area[J]. Engineering Mechanics, 2012, 30(2): 118-124. (in Chinese))
      [6]
      DA Fonseca A V, SILVA S R, CRUZ N. Geotechnical characterization by in situ and lab tests to the back-analysis of a supported excavation in Metro do Porto[J]. Geotechnical and Geological Engineering, 2010, 28(3): 251-264.
      [7]
      杨光华. 地基非线性沉降计算的原状土切线模量法[J]. 岩土工程学报, 2006, 28(11): 1927-1931. (YANG Guang-hua. Nonlinear settlement computation of the soil foundation with the undisturbed soil tangent modulus method[J]. Geotechnical Engineering, 2006, 28(11): 1927-1931. (in Chinese))
      [8]
      杨光华, 姜 燕, 张玉成, 等. 确定地基承载力的新方法[J]. 岩土工程学报, 2014, 36(4): 597-603. (YANG Guang-hua, JIANG Yan, ZHANG Yu-cheng, et al. New method for determination of bearing capacity of soil foundation[J]. Geotechnical Engineering, 2014, 36(4): 597-603. (in Chinese))
      [9]
      曹 权, 柴寿喜, 施建勇, 等. 基于自钻式旁压试验的黏性土孔压变化研究[J]. 长江科学院院报, 2009, 26(7): 29-32. (CAO Quan, CHAI Shou-xi, SHI Jian-yong, et al. Study on changes in porewater pressure of clays based onselfboring pressuremeter test[J]. Yangtze River Scientific Research Institute, 2009, 26(7): 29-32. (in Chinese))
      [10]
      SILVESTRI V. Assessment of self-boring pressuremeter tests in sensitive clay[J]. Canadian Geotechnical Journal, 2003, 40(2): 365-387.
      [11]
      DA FONSECA A V, CARVALHO J, FERREIRA C, et al. Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing techniques[J]. Geotechnical & Geological Engineering, 2006, 24(5): 1307-1348.
      [12]
      BOLTON M D, WHITTLE R W. A non-linear elastic/perfectly plastic analysis for plane strain undrained expansion tests[J]. Géotechnique, 1999, 49(1): 133-141.
      [13]
      王 沛,丁克胜, 杨宝珠. 自钻式旁压仪测定土的侧压力试验研究[J]. 岩土工程学报, 2008(增刊1): 416-418. (WANG Pei, DING Ke-sheng, YANG Bao-zhu. Lateral pressure of soil by self-boring pressuremeter[J]. Geotechnical Engineering, 2008(S1): 416-418. (in Chinese))
      [14]
      郝冬雪, 陈 榕, 栾茂田, 等. 自钻式旁压试验推求土性参数的研究进展[J]. 计算力学学报, 2011, 28(3): 452-460. (HAO Dong-xue, CHEN Rong, LUAN Mao-tian, et al. Research development of estimation for soil properties from SBPT[J]. Computational Mechanics, 2011, 28(3): 452-460. (in Chinese))
      [15]
      曹 权, 施建勇, 柴寿喜, 等. 小应变下土体刚度非线性分析的试验研究[J]. 岩土工程学报, 2009, 31(5): 699-703. (CAO Quan, SHI Jian-yong, CHAI Shou-xi, et al. Non-linear analysis of stiffness of soils under small strain[J]. Geotechnical Engineering, 2009, 31(5): 699-703. (in Chinese))
      [16]
      PALMER A C. Undrained plane strain expansion of a cylindrical cavity in clay: a simply interpretation of the pressuremeter test[J]. Géotechnique, 1972, 22(3): 451-457.
      [17]
      MUIR Wood D. Strain-dependent moduli and pressuremeter tests[J]. Géotechnique, 1990, 40(3): 509-512.
    • Related Articles

      [1]WANG Ziyuan, MO Pinqiang, HU Jing, ZHAO Zilu, XIAO Qiong. Experimental study on base pressure distribution of accumulations of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 158-163. DOI: 10.11779/CJGE2024S10020
      [2]LI Jian, LI Shichang, WU Gu, CHEN Shanxiong, YU Fei, DAI Zhangjun, ZHANG Yu. Soil water characteristics of coarse-grained accumulation soil and their prediction method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 50-53. DOI: 10.11779/CJGE2023S10037
      [3]YANG Xiao-hui, CHEN Kun-quan, DIAO Xian-feng, ZHOU Ting-yu. Model tests and stability of accumulation landslides under coupling action of earthquake and rainfall[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 58-62. DOI: 10.11779/CJGE2022S1011
      [4]ZHAN Zheng-gang, CHENG Rui-lin, SUN Wei, ZHANG He-zuo. Disaster analysis and countermeasures of large accumulation in reservoir areas[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 194-200. DOI: 10.11779/CJGE202201020
      [5]XIA Yuan-you, CHEN Chen, NI Qing. Pull-out mechanism of continuous ball shape anchors in transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 804-812. DOI: 10.11779/CJGE201705004
      [6]YANG Ji-hong, DONG Jin-yu, HUANG Zhi-quan, ZHENG Zhu-guang, QI Dan. Large-scale direct shear tests on accumulation body with different stone contents[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 161-166. DOI: 10.11779/CJGE2016S2026
      [7]ZUO Zi-bo, ZHANG Lu-lu, WANG Jian-hua. Model tests on rainfall-induced colluvium landslides: effects of particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1319-1327. DOI: 10.11779/CJGE201507020
      [8]ZHU Zheng-guo, ZHU Yong-quan, WU Guang-ming, ZHANG Bin, YU Jian-tao, WANG Jin-tao. Strengthening method and stability analysis for tunnel base in debris flow accumulation body[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 617-621.
      [9]Stability and treatment of Zhenggang landslide accumulation mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 28(9).
      [10]CHEN Hongqi, HUANG Runqiu, LIN Feng. Study on the spatial engineering effect of large accumulation slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 323-328.
    • Cited by

      Periodical cited type(22)

      1. 王浩,付德伟,郭剑波,晏田田,宋昊明. 黄原胶和木质素纤维改良粉砂土抗压强度特性及微观机理分析. 科学技术与工程. 2025(04): 1602-1612 .
      2. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
      3. 王永辉. 冻融循环条件下黏土抗剪强度试验研究. 路基工程. 2025(02): 57-62 .
      4. 柴寿喜,赵熹,魏丽,丛海琦. 含盐量对固化硫酸盐渍土抗剪性能与微观结构的影响. 工业建筑. 2025(04): 162-167 .
      5. 戴涛,蒋潇伊,鹿庆蕊,陈士军. 木质素纤维-水泥改良土无侧限抗压强度试验. 科学技术与工程. 2025(14): 5999-6008 .
      6. 尹晓雯. 冻融循环下纤维-造纸废物联合改良淤泥质土力学性能研究. 粘接. 2024(02): 139-142 .
      7. 朱锐,王燕杰,黄英豪,张文,邢玮,周峰. 木质素纤维改良膨胀土的冻融特性及微观机理. 农业工程学报. 2024(02): 263-272 .
      8. 周恩全,张曼,居东煜,王龙,李护良. 干湿循环下木质素改良粉土抗剪强度特性. 工程科学与技术. 2024(02): 208-216 .
      9. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 .
      10. 徐鑫,于忠禹,牛岑岑,苑晓青,雷浩民. 双聚合物改良分散性土的力学特性及机制研究. 广西大学学报(自然科学版). 2024(03): 490-502 .
      11. 朱怀太,欧尔峰,姜琪,赵永春,赵建沅. 冻融作用下复合相变材料改良黄土力学特性研究及机理分析. 防灾减灾工程学报. 2024(03): 715-724 .
      12. 何菲,雷婉玉,岳亚强,毛尔清,刘清泉,王旭. 基于CiteSpace知识图谱的冻土路基研究现状与趋势分析. 冰川冻土. 2024(03): 891-908 .
      13. 李琦峰,邢峥光,党冰,彭尔兴,胡晓莹. 木质素纤维-MICP固化粉土在冻融循环作用下的力学性能研究. 冰川冻土. 2024(06): 1828-1838 .
      14. 徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 .
      15. 任昆,于泽宁,石孟奇. 冻融条件下水泥煤渣改良土非均匀损伤特性. 铁道工程学报. 2023(07): 15-19+26 .
      16. 董超凡,张吾渝,孙翔龙,解邦龙. 木质素纤维改良黄土抗剪强度的试验研究. 安全与环境工程. 2022(02): 102-110 .
      17. 彭丽云,华小宁,刘德欣,齐吉琳. 秸秆加筋粉土的冻胀特性研究. 冰川冻土. 2022(01): 241-250 .
      18. 董超凡,林城,张吾渝,孙翔龙,黄雨灵. 寒旱区木质素纤维改良黄土的热学与力学性质研究. 干旱区资源与环境. 2022(05): 119-126 .
      19. 董超凡,张吾渝,张瑞星,黄雨灵,高英. 冻融作用下木质素纤维改良黄土力学与热学特性试验研究. 冰川冻土. 2022(02): 612-622 .
      20. 阮波,袁忠正,张佳森,郑世龙,张向京,聂如松. 养护条件对纤维水泥改良风积沙强度及微观结构影响. 铁道科学与工程学报. 2022(06): 1594-1604 .
      21. 柴寿喜,张琳,魏丽,田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构. 水文地质工程地质. 2022(05): 96-105 .
      22. 程卓,崔高航,高原昊,刚浩航,高泽宁,杨政,张鑫. 季冻区粉煤灰加固路基土力学性能试验研究. 硅酸盐通报. 2021(11): 3854-3864+3875 .

      Other cited types(35)

    Catalog

      Article views (434) PDF downloads (409) Cited by(57)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return