• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007
Citation: DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007

Influence of geopolymer on strength of cement-stabilized soils and its mechanism

More Information
  • Received Date: November 15, 2014
  • Published Date: March 24, 2016
  • The unconfined compression shearing tests, scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) methods are used to clarify the strength behavior and microstructural evolution of cement-stabilized soils with geopolymer (metakaolin), and then the in-situ tests are conducted to verify their practicability and economy. The results show that when the geopolymer MK is incorporated into the cement, the strength of cement-stabilized soils is obviously multiplied, and significantly better than that modified just by the pure cement, which means that the strength behavior of cemented soils can be further improved. It should be noted that the strength of cement-stabilized soils does not linearly increase with the mixing ratio of geopolymer; its growth efficiency can be divided into the active and inert zones; and the threshold mixing ratio of MK is 3% in this case. The microstructural analysis shows that the MK incorporation can produce more cementation and make the sample denser. Furthermore, the proposed strength enhancement prediction model also verifies these findings. Finally, the analysis of the in-situ strength and economy also shows its effectiveness and the potential engineering application.
  • [1]
    POON C S, KOU S C, LAM L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials, 2006, 20: 858-865.
    [2]
    WILD S, KHATIB J M, JONES A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin[J]. Cement and Concrete Research, 1996 26(10): 1537-1544.
    [3]
    AMBROISE J, MAXIMILIEN S, PERA J. Properties of metakaolin blended cements[J]. Advanced Cement Research,1994, 1(4): 161-168.
    [4]
    LI Z J, DING Z. Property improvement of Portland cement by incorporating with metakaolin and slag[J]. Cement and Concrete Research, 2003, 33(4): 579-584.
    [5]
    LAGIER F, KURTIS K E. Influence of Portland cement composition on early age reactions with metakaolin[J]. Cement and Concrete Research, 2007, 37: 1411-1417.
    [6]
    GESOGLU E G, MERMERDAS K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin[J]. Materials and Structures, 2008, 41: 937-949.
    [7]
    SHEKARCHI M, BONAKDAR A, BAKHSHI M, et al. Transport properties in metakaolin blended concrete[J]. Construction and Building Materials, 2010, 24(11): 2217-2223.
    [8]
    KHATIB J M, WILD S. Pore size distribution of metakaolin paste[J]. Cement and Concrete Research, 1996, 26(10): 1545-1553.
    [9]
    POON C S, LAM L, KOU S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes[J]. Cement and Concrete Research, 2001, 31: 1301-1306.
    [10]
    FRIAS M, RAJOS M I, CABRERA J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars[J]. Cement and Concrete Research, 2000, 30: 209-216.
    [11]
    JUSTICE J M, KURTIS K E. Influence of metakaolin surface area on properties of cement-based materials[J]. Journal of Materials in Civil Engineering, 2007, 19: 762-771.
    [12]
    GRUBER K A, RAMLOCHAN T, BODDY A, et al. Increasing concrete durability with high-reactivity metakaolin[J]. Cement & Concrete Composites, 2001, 23: 479-484.
    [13]
    BATIS G, PANTAZOPOULOU P, TSIVILIS S, et al. The effect of metakaolin on the corrosion behavior of cement mortars[J]. Cement & Concrete Composites, 2005, 27: 125-130.
    [14]
    KIM H S, LEE S H, MOON H Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Construction and Building Materials, 2007, 21: 1229-1237.
    [15]
    POLOMO A, BLANCO M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin[J]. Cement and Concrete Research, 1999, 29: 997-1004.
    [16]
    ALAKHRAS N M Durability of metakaolin concrete to sulfate attack[J]. Cement and Concrete Research, 2006, 36: 1727-1734.
    [17]
    刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京. 中国建筑工业出版社, 2006. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and application of dry jet mixing composite foundation[M]. Beijing: China Architecture & Building Press, 2006. (in Chinese))
    [18]
    储诚富, 李小春, 邓永锋, 等. 偏高岭土对水泥改性海相黏土力学性能的影响[J]. 岩土工程学报, 2013, 35(增刊1): 170-174. (CHU Cheng-fu, LI Xiao-chun, DENG Yong-feng, et al. Influence of metakaolin on mechanical properties of cement-modified marine soft soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 170-174. (in Chinese))
    [19]
    UDDIN K. Strength and deformation behavior of cement treated Bangkok clay[D]. Bangkok: Asian Institute of Technology, 1994.
    [20]
    BERGADO D T, ANDERSON L R, MIURA N, et al. Soft ground improvement in lowland and other environments[M]. Virginia: American Society of Civil Engineers Press, 1996.
    [21]
    HOPRIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85-98.
    [22]
    LORENZO G A, BERGADO D T. Fundamental characteristics of cement-admixed clay in deep mixing[J]. Journal of Materials in Civil Engineering , 2006, 18(2): 161-174.
    [23]
    LORENZO G A, BERGADO D T. Fundamental parameters of cement-admixed clay-new approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1042-1050.
    [24]
    ZHANG D W, CAO Z G, FAN L B, et al. Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay[J]. Journal of Southeast University, 2013, 29(1): 79-83.
    [25]
    ZHANG D W, CHEN L, LIU S Y. Key parameters controlling electrical resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19: 2991-2998.
    [26]
    CONSOLI N C, FOPPA D, FESTUGATO L, et al. Key paramenters for strength control of artificially cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 197-205.
    [27]
    CONSOLI N C, CRUZ R C, FLOSS M F, et al. Parameters controlling tensile and compressive strength of artificially cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 759-763.
  • Cited by

    Periodical cited type(9)

    1. 陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 .
    2. 李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
    4. 项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
    5. 李彩霞,李俊,徐猛,刘敏,刘桂祺. 氯盐溶液对钠基膨润土垫层膨胀性能的影响. 土木与环境工程学报(中英文). 2023(01): 97-104 .
    6. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
    7. 曾召田,张瀚彬,邵捷昇,车东泽,吕海波,梁珍. MX-80膨润土高温老化时间效应的细微观分析. 岩土力学. 2023(S1): 145-153 .
    8. 胡志杰,项国圣,付文青,王浩,李华健. 荷载-溶液作用下膨润土压缩渗透性能研究. 地下空间与工程学报. 2023(06): 1851-1858 .
    9. 项国圣,胡志杰,葛磊,王浩. 含盐水溶液作用下膨润土膨胀性能衰减机理. 华北水利水电大学学报(自然科学版). 2022(05): 85-91 .

    Other cited types(6)

Catalog

    Article views (568) PDF downloads (564) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return