Citation: | DENG Yong-feng, WU Zi-long, LIU Song-yu, YUE Xi-bing, ZHU Lei-lei, CHEN Jiang-hua, GUAN Yun-fei. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. DOI: 10.11779/CJGE201603007 |
[1] |
POON C S, KOU S C, LAM L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Construction and Building Materials, 2006, 20: 858-865.
|
[2] |
WILD S, KHATIB J M, JONES A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin[J]. Cement and Concrete Research, 1996 26(10): 1537-1544.
|
[3] |
AMBROISE J, MAXIMILIEN S, PERA J. Properties of metakaolin blended cements[J]. Advanced Cement Research,1994, 1(4): 161-168.
|
[4] |
LI Z J, DING Z. Property improvement of Portland cement by incorporating with metakaolin and slag[J]. Cement and Concrete Research, 2003, 33(4): 579-584.
|
[5] |
LAGIER F, KURTIS K E. Influence of Portland cement composition on early age reactions with metakaolin[J]. Cement and Concrete Research, 2007, 37: 1411-1417.
|
[6] |
GESOGLU E G, MERMERDAS K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin[J]. Materials and Structures, 2008, 41: 937-949.
|
[7] |
SHEKARCHI M, BONAKDAR A, BAKHSHI M, et al. Transport properties in metakaolin blended concrete[J]. Construction and Building Materials, 2010, 24(11): 2217-2223.
|
[8] |
KHATIB J M, WILD S. Pore size distribution of metakaolin paste[J]. Cement and Concrete Research, 1996, 26(10): 1545-1553.
|
[9] |
POON C S, LAM L, KOU S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement pastes[J]. Cement and Concrete Research, 2001, 31: 1301-1306.
|
[10] |
FRIAS M, RAJOS M I, CABRERA J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars[J]. Cement and Concrete Research, 2000, 30: 209-216.
|
[11] |
JUSTICE J M, KURTIS K E. Influence of metakaolin surface area on properties of cement-based materials[J]. Journal of Materials in Civil Engineering, 2007, 19: 762-771.
|
[12] |
GRUBER K A, RAMLOCHAN T, BODDY A, et al. Increasing concrete durability with high-reactivity metakaolin[J]. Cement & Concrete Composites, 2001, 23: 479-484.
|
[13] |
BATIS G, PANTAZOPOULOU P, TSIVILIS S, et al. The effect of metakaolin on the corrosion behavior of cement mortars[J]. Cement & Concrete Composites, 2005, 27: 125-130.
|
[14] |
KIM H S, LEE S H, MOON H Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin[J]. Construction and Building Materials, 2007, 21: 1229-1237.
|
[15] |
POLOMO A, BLANCO M T, GRANIZO M L, et al. Chemical stability of cementitious materials based on metakaolin[J]. Cement and Concrete Research, 1999, 29: 997-1004.
|
[16] |
ALAKHRAS N M Durability of metakaolin concrete to sulfate attack[J]. Cement and Concrete Research, 2006, 36: 1727-1734.
|
[17] |
刘松玉, 钱国超, 章定文. 粉喷桩复合地基理论与工程应用[M]. 北京. 中国建筑工业出版社, 2006. (LIU Song-yu, QIAN Guo-chao, ZHANG Ding-wen. The principle and application of dry jet mixing composite foundation[M]. Beijing: China Architecture & Building Press, 2006. (in Chinese))
|
[18] |
储诚富, 李小春, 邓永锋, 等. 偏高岭土对水泥改性海相黏土力学性能的影响[J]. 岩土工程学报, 2013, 35(增刊1): 170-174. (CHU Cheng-fu, LI Xiao-chun, DENG Yong-feng, et al. Influence of metakaolin on mechanical properties of cement-modified marine soft soil[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 170-174. (in Chinese))
|
[19] |
UDDIN K. Strength and deformation behavior of cement treated Bangkok clay[D]. Bangkok: Asian Institute of Technology, 1994.
|
[20] |
BERGADO D T, ANDERSON L R, MIURA N, et al. Soft ground improvement in lowland and other environments[M]. Virginia: American Society of Civil Engineers Press, 1996.
|
[21] |
HOPRIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85-98.
|
[22] |
LORENZO G A, BERGADO D T. Fundamental characteristics of cement-admixed clay in deep mixing[J]. Journal of Materials in Civil Engineering , 2006, 18(2): 161-174.
|
[23] |
LORENZO G A, BERGADO D T. Fundamental parameters of cement-admixed clay-new approach[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 1042-1050.
|
[24] |
ZHANG D W, CAO Z G, FAN L B, et al. Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay[J]. Journal of Southeast University, 2013, 29(1): 79-83.
|
[25] |
ZHANG D W, CHEN L, LIU S Y. Key parameters controlling electrical resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19: 2991-2998.
|
[26] |
CONSOLI N C, FOPPA D, FESTUGATO L, et al. Key paramenters for strength control of artificially cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 197-205.
|
[27] |
CONSOLI N C, CRUZ R C, FLOSS M F, et al. Parameters controlling tensile and compressive strength of artificially cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 759-763.
|
1. |
陈梦豪,付海,曹珊珊,林铭宇,陈良宇. 温度对MX-80膨润土物理性能的影响. 金陵科技学院学报. 2024(01): 46-53 .
![]() | |
2. |
李裕诚,陈永贵,刘丽,叶为民,王琼. 高压实膨润土多尺度膨胀力特性研究进展. 岩土工程学报. 2024(11): 2457-2464 .
![]() | |
3. |
薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
![]() | |
4. |
项国圣,卞云飞,付文青,周殷康. 热-碱作用对压实膨润土抗剪性能的影响. 安徽建筑大学学报. 2024(06): 8-14 .
![]() | |
5. |
李彩霞,李俊,徐猛,刘敏,刘桂祺. 氯盐溶液对钠基膨润土垫层膨胀性能的影响. 土木与环境工程学报(中英文). 2023(01): 97-104 .
![]() | |
6. |
王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
![]() | |
7. |
曾召田,张瀚彬,邵捷昇,车东泽,吕海波,梁珍. MX-80膨润土高温老化时间效应的细微观分析. 岩土力学. 2023(S1): 145-153 .
![]() | |
8. |
胡志杰,项国圣,付文青,王浩,李华健. 荷载-溶液作用下膨润土压缩渗透性能研究. 地下空间与工程学报. 2023(06): 1851-1858 .
![]() | |
9. |
项国圣,胡志杰,葛磊,王浩. 含盐水溶液作用下膨润土膨胀性能衰减机理. 华北水利水电大学学报(自然科学版). 2022(05): 85-91 .
![]() |